
May 29, 2006 21:8

Proceedings of IDETC/CIE 2006
ASME 2006 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference
Philadelphia, Pennsylvania USA, September 10 – 13, 2006

DETC2006-99360

KNOWLEDGE MODEL FOR MANAGING PRODUCT VARIETY
AND ITS REFLECTIVE DESIGN PROCESS

Yutaka Nomaguchi, Tomohiro Taguchi and Kikuo Fujita
Department of Mechanical Engineering

Osaka University
Suita, Osaka 565-0871, JAPAN

Email: noma@mech.eng.osaka-u.ac.jp

Tel: +81-6-6879-7324, Fax: +81-6-6879-7325

ABSTRACT
Recent manufacturers have been utilizing product families

to diversify and enhance the product performance by simultane-
ously designing multiple products under commonalization and
standardization. Design information of product architecture and
family is inevitably more complicated and numerous than that
of a single product. Thus, more sophisticated computer-based
support system is required for product architecture and family
design. This paper proposes a knowledge model for a computer-
based system to support reflective process of designing prod-
uct architecture and product family. This research focuses on
three problems which should be overcome when product family
are modeled in the computer system; design repository without
data redundancy and incorrectness, knowledge acquisition with-
out forcing the additional effort on the designer, and integration
of prescriptive models to support early stages of the design pro-
cess. An ontology that is a foundation of a knowledge model is
defined to resolve these problems. An example of designing an
air conditioner product family is shown to demonstrate the capa-
bility of the system.

Keywords: Product architecture, product family, knowledge
model, knowledge acquisition, design rationale, design support,
ontology　　

1 INTRODUCTION
As manufactures adapt to recent highly competitive

global marketplace, need of integrating various high-end
performances and cost reduction of product increases. They are
utilizing product families to diversify and enhance the product
performance by simultaneously designing multiple products
under commonalization and standardization (Simpsonet al.,
2006). The key to rational and successful product family design
is product architecture (Ulrich, 1995). Platform design of
automobiles, i.e., Volkswagen’s A-Platform (Wilhelm, 1997), is
a representative example, which shows the power of established
product architecture.

This research defines product architecture as the schema
which connotes each product variant by defining possible
structures and possible attribute values. Product architecture
is generally written by multiple aspects, such as customer
needs, functions and entities. Design information of product
architecture and family is inevitably more complicated and
numerous than that of a single product. Thus, a more
sophisticated computer-based support system is required for
product architecture and family design. When product family
is modeled in a computer system, a major problem is product
description of multiple aspects on a product family without
data redundancy and incorrectness even in large-scaled design
repository (McKay et al., 1996). Another problem is that
supporting iterative process, in which a designer performs trials

1 Copyright c⃝ 2006 by ASME

and errors reflectively, is inevitable in an early stage of the design
process. Even though many research groups have been tackling
computational methods to optimize product architecture and
family design (Simpson, 2004) in the later stages, the conceptual
design stage should be supported by a prescriptive methodology
such as QFD and GVI/CI (Martin and Ishii, 2002). It is valuable
to externalize his/her design knowledge and then to reflectively
consider it.

This paper proposes a knowledge model of product
architecture and family which solves the above mentioned
problems. For design repository without data redundancy and
incorrectness, this research defines an ontology of product
architecture and family design. For supporting reflective design
process, a knowledge management oriented design support
system which we have been developing (Nomaguchiet al., 2004)
is used. This system automatically captures design process
and generate an argumentation structure based on IBIS (Issue
Based Information System) (Kunz and Rittel, 1970) in order
to represent a designer’s reflective process. To employ this
system, a knowledge model should have the following two
functions; (i) to formally capture design process, an ontology
that is a foundation of a knowledge model should define not only
concepts of a result of design but also concepts of any state of
design and (ii) to integrate prescriptive design models, model-
dependent concepts should be defined as an extended part of the
ontology.

The following part of this paper consists of six sections.
Section 2 describes our perspective of knowledge. Section
3 proposes an ontology of product architecture and family
design. Section 4 briefly explains the features of a knowledge
management oriented design support system which we have
been developing (Nomaguchiet al., 2004). Section 5
illustrates implementation and a design example. In Section
6, characteristics of our research are discussed by comparing
related works. Section 7 concludes this paper.

2 KNOWLEDGE MODEL
As knowledge management has become a new hot topic in

the last decade, knowledge modeling is one of key issues of
design research (e.g., Rosenman and Simoff, 2001). Different
researchers defined knowledge to investigating questions; ‘what
is knowledge?’ and ‘how is it produced?’ This section describes
our perspective of knowledge.

2.1 Reflective Design Process and Knowledge
In general, human’s problem solving including design is

done through an iteration process (Simon, 1969). Knowledge
takes a crucial role to do effective trials in an iteration process
as much as possible and to aim at a goal. Schön (1982)
analyzed knowledge of professionals such as medical doctors,

Ontology

Design information

Designer

Design

Reflection

Argumentation

Figure 1. Ontology based reflective design process

architect designers and engineers, and proposed two models of
knowledge. One is knowledge of a technical expert, which
is systematized and can be applied to practices in an explicit
manner. The other is knowledge of a reflective practitioner,
which is not systematized and should be captured through
reflective process of practices. In design process, some of
knowledge is based on an already-systematized theory such
as physics. Besides, a designer acquires many of knowledge
through experiences of iterations. As Schön stated that the
latter knowledge is essential to tackle recent complex problems,
acquisition of it is required for knowledge management.

To formally capture reflective design process, this research
proposes an ontology based approach. An ontology of design
works as a foundation of reflective design process as shown in
Figure 1. Firstly, a designer creates design information on an
ontology. Secondly, an argumentation structure in design process
is elicited based on an ontology. Finally, a designer reflects
his/her design process by elicited argumentation structure. Based
on this reflection, a further design is done. While Schön
focuses on a certain pattern of reflection in mind, we focus
on formal elicitation of reflection. A framework discussed in
this research supports further reflection in mind by formally
capturing argumentation structure of design process which is
done as a result of reflection.

2.2 Knowledge Management Oriented Design Sup-
port

We have been researching a knowledge management
oriented design support framework to dynamically acquire
designer’s knowledge, which is used in reflective design process,
as a by-product of design without forcing additional effort on a
designer (Nomaguchiet al., 2004). It is an implementation of
an ontology based approach to formally capture reflective design
process.

This framework formally captures design process at three
levels as shown in Figure 2; log of designer’s actions, state
transition of design information and argumentation structure
of a designer’s thinking process. The third level represents
reflective process explicitly, and it is composed automatically
based on the first level. In this framework, a knowledge model,
which is based on an ontology of design, takes an important

2 Copyright c⃝ 2006 by ASME

Position

Purpose Means

State n+2

State n+3

State n-2

State n-1

Position

Issue

Position

State n+1

PositionIssue

State n

Design operation

MeansPurpose MeansPurpose
Action

level

Model op.

level

Argumentation

levelArgument

Position

Purpose Means

State n+2

State n+3

State n-2

State n-1

Position

Issue

Position

State n+1

PositionIssue

State n

Design operation

MeansPurpose MeansPurpose
Action

level

Model op.

level

Argumentation

levelArgument

Figure 2. Design process model integrating Action,
Model operation and Argumentation

role. A log of designer’s actions is captured as a sequence of
operations to a knowledge model. A state transition of design
information is captured as a state transition of a knowledge
model. An argumentation structure of a designer’s thinking
process is captured as a structure of purpose and means of an
operation to a knowledge model.

From the viewpoint of this framework, a knowledge model
should meet the following requirements. Firstly, a knowledge
model should record not only the result of design but also
states of design at a certain moment of design process.
Secondly, a knowledge model should integrate various design
models to represent design information from various aspects
such as customer needs, functionality, structure and cost.
Lastly, operations to a knowledge model should be defined by
considering its purpose and means, which corresponds to an issue
and a position of argumentation, respectively.

2.3 Toward Product Architecture and Product Family
Design

Process of product architecture and family design also
includes iteration process to reflectively consider problems
such as ‘which product should be in a family?,’ ‘how
product architecture should be?,’ ‘which component should be
commonalized?’ and so on. To support reflective design
process, some prescriptive methods have been developed, e.g. the
market segmentation grid (Meyer, 1997) which is to plan family
deployment strategy, GVI/CI (Martin and Ishii, 2002) which is
QFD based indices to evaluate product architecture from the
viewpoint of robustness against market changes. It is valuable
for a designer by using such prescriptive models to externalize
his/her knowledge, then to consider various ideas reflectively.

In order to apply the knowledge management oriented
design support system to design of product architecture and

product family, this paper defines a ontology that is a foundation
of a knowledge model of product architecture and product family.
This paper mainly discusses the first and the second requirements
stated in Subsection 2.2. The last requirement is remained as our
future work.

3 MODELING PRODUCT ARCHITECTURE AND
PRODUCT FAMILY

3.1 Overview of Modeling Ontology
This section explains modeling concepts of a knowledge

model, which is proposed for product architecture and family
design. An ontology is a basis of knowledge modeling. Note
that we interpret ontology in the sense; a theory about the sorts of
concepts, properties of concepts, and relations among concepts
that are defined in a specified domain of knowledge.

An ontology proposed in this research consists of two
layers; a model-independent layer and a model-dependent layer.
A model-independent layer consists of concepts to represent
product architecture and product family which is independent
from any specific prescriptive design model. A model-dependent
layer consists of concepts to represent specific prescriptive
design models. A concept of the latter layer is defined as a
subclass of model-independent layer concepts. The combination
of the above two layers makes expansibility higher. When a new
prescriptive design model is integrated, new concepts is added
only to model-dependent layer while model-independent layer is
not modified.

3.2 Illustrative Example of Product Architecture and
Family Deployment

This subsection introduces a design example used through-
out this paper in advance; a design of indoor unit family of an
air conditioner. Figure 3 shows a typical indoor unit of an air
conditioner. The product architecture of entity aspect are shown
in Figure 4 by UML (Unified Modeling Language). A rectangle

heat exchanger
fan motor

fan rotor
outdoor unit

humidifier

d

r

heat exchanger

air

Figure 3. Schematic of indoor unit of air conditioner

3 Copyright c⃝ 2006 by ASME

Indoor unit : Element

Figure 4. Product architecture of entity aspect of air conditioner indoor unit

Indoor unit: Ins. of element

Figure 5. Indoor unit variant

node means an instance of a defined concept. Figure 4 shows a
part of entity aspect structure, but it would be enough to under-
stand the overview of a proposed knowledge model.

In Figure 4, there are two possible hierarchical structures of
an indoor unit. One is a normal type hierarchy, which has a fan
motor, a fan rotor and a heat exchanger as a subcomponent of
an indoor unit. The other is an humidifier type hierarchy, which
has a humidifier in addition to the normal type structure. A part
of attributes which are used to specify an indoor unit variant are
also shown in Figure 4; rating round per minute of a fan rotor,
radius (r) of a fan rotor, cooling capacity of a heat exchanger and
depth (d) of a heat exchanger. A value of the attribute of the
component can be selected from the possible values defined by

the module alternatives.
The combination of possible hierarchy types and possible

modules results in 24 possible variants of the indoor unit
family. However, constraints reduce the potential variety. In
this example, there are two constraints; a constraint on depth of
a heat exchanger ‘d < 150’ and a constraint on radius of a fan
rotor ‘r < d− 40.’ Because of these constraints, 6 variants are
possible. Figure 5 shows one of the possible variants.

3.3 Model-independent Concept
This subsection introduces concepts of a model-independent

layer. Concepts in this layer form a taxonomical hierarchy as

4 Copyright c⃝ 2006 by ASME

Figure 6. Taxonomy of modeling concepts

shown in Figure 6. The concept taxonomy, properties of concepts
and associations between concepts are represented in the UML
format.

A basic idea to represent product family in this research
is as follows. Firstly, product architecture is represented as
a schema which connotes the all possible structures and the
possible value of the attribute. A product variant is represented as
an instance of the product architecture. Then, commonalization
and standardization is defined among product variants. Finally,
detailed attribute values which characterize each product variant
are defined. Therefore, the modeling concepts of this layer can
be categorized into four; product architecture concept, product
variants concept, commonalization concept and attribute value
concept.

3.3.1 Product architecture concept Product archi-
tecture concept has the following sub concepts; structural archi-
tecture, attribute architecture and module. Structural architecture
is a concept representing structural view point of product archi-
tecture. This has the following sub concepts. Figure 7 shows
associations defined among the structural architecture concepts.

Element is a concept that constructs a product architecture.
This is further categorized into three concepts; customer
need, function and entity. For example, an element
of customer need of an air conditioner is ‘comfortable
temperature,’ ‘save energy,’ etc., an element of function is
‘to control air temperature,’ etc., and an element of entity is

‘fan rotor,’ ‘heat exchanger,’ etc.
Hierarchy is a concept that represents a possible hierarchical

relationship between elements. A hierarchy node has
an association to an element, which is super level of
the hierarchy, and elements, which are sub level of the
hierarchy. In the example, a hierarchy node ‘humidifier
type’ represents that ‘indoor unit’ has four sub entities; ‘heat
exchanger,’ ‘fan rotor,’ ‘fan motor’ and ‘humidifier.’

Relation is a concept that represents a relation between
elements. For example, ‘Function-Structure relation’ is
defined among a function ‘to control air temperature’ and
entities ‘fan motor,’ ‘fan rotor,’ ‘heat exchanger.’

Attribute architecture is a concept representing a mathematic
constraint which reduces possible product variants. This has
following three sub concepts. Figure 8 shows associations
defined among attribute architecture concepts.

Relation

related elements
super element

sub elements

Element
Hierarchy

EntityFunctionCustomer need

Figure 7. Associations of structural architecture con-
cepts

5 Copyright c⃝ 2006 by ASME

output attribute

Mapping

input attributes

Constraint

attributes

Attribute

relation

element

Relation

Element

Figure 8. Associations of attribute architecture concepts

Attribute is a concept that represents a character of an element
or a relation. An attribute node has an association to an
element or a relation. In the example of Figure 4, two
attributes of entity ‘heat exchanger’ are defined; ‘cooling
capacity’ and ‘depth.’ An attribute node has a unique
attribute value.

Mapping is a concept that represents existence of a numerical
function which determines a value of an attribute. A
mapping node has an association to one output attribute and
multiple input attributes. A list of pairs of an equation and
its condition is defined as a property of a mapping node.

Constraint is a concept that represents existence of a constraint
among attribute values. A constraint node has an association
to multiple attributes. A list of pairs of a formula and its
condition are defined as a property of a constraint node. In
Figure 4, two inequality constraints ‘r < d− 40,d < 150’
are defined for a heat exchanger’s depth (d) and a fan rotor
radius (r).

Module is a concept representing available modules of an
entity. This has the following two sub concepts. Figure 9 shows
associations defined among module concepts.

Module alternativeis a concept which represents existence of
available modules for an entity. A module alternative node
has an association to one entity node. A list of module
names is defined as property of a module alternative node.
In Figure 4, a heat exchanger has two module alternatives;
X1 and X2.

Attribute value varietyis a concept which represents attribute
values of each module which is defined by a module
alternative node. A value variety node has an association

module alternative

Attribute value variety

attribute

Entity

Attribute

entityModule alternative

Figure 9. Associations of module concepts

to one attribute node and one module alternative node. A
list of possible values is defined as property of an attribute
value variety node. Possible values are defined in the same
order as module names of an associated module alternative
node. In Figure 4, X1, a module of a heat exchanger, has the
following attribute values; cooling capacity= 2.8,depth=
220.

3.3.2 Product variant concept Product variant con-
cept represents a structure of a product in a product family. Fig-
ure 10 shows associations defined among product variant con-
cepts. This concept has the following two sub concepts.

Product is a concept which represents a product variant in a
product family.

Because product architecture connotes all possible structures,
a structure of a product variant is represented as an instance
of concepts of product architecture. To represent a product
variant in this way, this research definesinstance concept. Note
that instance is used as the similar sense of object-oriented
programming; a substance of information of a class that defines
properties and methods of an object. In this definition, structural
architecture concepts correspond to a class of instances.

Instance is a concept which represents that a product has
an instance of product architecture concept. Three sub
concepts corresponding to structural architecture concepts
are defined; instance of element, instance of relation and
instance of hierarchy. Each of an instance node has an
association to a product node and a ‘class’ concept of
product architecture.

Product

Element

Relation

Hierarchy

Instance of relation

Instance of hierarchy

Instance of element

*

*

*

product1

product

1

product

1

class

1

class

1

class

1

Figure 10. Associations of product variant concepts

6 Copyright c⃝ 2006 by ASME

An instance node means that a product inherits a ‘class’ concept
of product architecture, and that a product also inherits attributes,
mappings, constraints, module alternatives and attribute value
varieties which are associated to a class concept. This
mechanism serves to reduce the amount of information required
to represent product family.

3.3.3 Commonalization concept Commonalization
concept represents commonality among product variants. The
following two sub concepts are defined. Figure 11 shows
associations related to commonalization concepts.

Commonalized instance of elementis a concept which repre-
sents intention of a designer to commonalize components or
parts of multiple product variants. A node of this concept
has an association to multiple nodes ofinstance of element.

Selected moduleis a concept which represents a module
selected for an instance of entity. A selected module node
has a module id number as property, which designates
a selected module name and a selected possible value.
A selected module node has an association to a module
alternative and an instance of element.

3.3.4 Attribute value concept Attribute value con-
cept has two sub concepts; attribute value and violation. Fig-
ure 12 shows associations related to attribute value concepts.

Attribute value is a concept which represents a value of an
attribute of an instance node. An attribute value node has
a value and a value type as property.

There are four association types for an attribute value node as
shown in Figure 12. A different association means a different
way of determining an attribute value.

Association to an attribute and an instancerepresents that an
attribute value of an instance is determined. An instance
node in this definition can be omitted when it is a default
value for all product variants.

Association to an attribute, an instance, a mapping and
attribute valuesrepresents that an attribute value is deter-
mined as a result of calculating a mapping equation with
input attribute values. An instance node in this definition
can be omitted when it is a default value for all product
variants.

Association to an attribute and a commonalized instance of
elementrepresents that an attribute value is determined as a
result of commonalization.

Association to an attribute, a value variety and a selected
modulerepresents that an attribute value is determined as a
result of selecting a module.

Module alternatives

Instance of element

Module alternatives

Selected module

Commonalized ins. of element Instance of element

commonalized entities

1
*

module alt.

1

commonalized ins.

1

module alt.

1

ins. of element

0..1

Figure 11. Associations of commonalization concepts

After an attribute value is determined, it should be checked
whether it satisfies a constraint or not. If not, violation node is
created to indicate a designer.

Violation is a concept which represents an attribute value
violates a constraint. A violation node has an association
to attribute values and a constraint.

Violation should be resolved by altering input attribute values
or by relaxing a constraint. Note that the knowledge model

Selected module

Attribute

Attribute value variety

Attribute value

Attribute

Mapping

Instance

Attribute

Commonalized ins. of element

Attribute

Instance

Constraint

Attribute value

Violation

1

instance

0..1

attribute

1

attribute

1

commonalized ins.

1

1

output attribute

1

mapping

1

instance

0..1

input attribute values
*

1

variety

1

attribute

1

1

1

constraint

1

attribute values

*

selected module

1

Figure 12. Associations of attribute value concepts

7 Copyright c⃝ 2006 by ASME

does not take charge of resolving constraint violation. The
knowledge model does just describe a state of design which
includes constraint violation.

3.4 Model-dependent concept
This subsection introduces prescriptive models which this

research employs. A concept necessary to express these models
is defined as a subclass of a model-independent concept. There is
a possibility that other concepts in addition to concepts explained
in this subsection are defined if necessary when the other model
is integrated to the knowledge model.

3.4.1 Value graph, Function-Structure mapping
Value graph describes development of a customer need ‘good
product’ into sublevel customer needs (see Figure 17-⃝1).
Function-structure mapping describes development of functions
and components of a product, and relationships between
functions and components (see Figure 17-⃝3). Four concepts;
customer need, function, entity and hierarchy are used to
represent a development hierarchy.

3.4.2 Market segmentation grid Market segmenta-
tion grid is a chart to segment a market (Meyer, 1997) (see Fig-
ure 17-⃝2). Two axes, a segment (horizontal) axis and a scale
(vertical) axis, and grids of an axis divides a market into niches.
By allocating a product variant to a niche, a designer can discuss
a strategy of product variant deployment. This research uses a
customer need concept to represent an axis of an market segment
grid. In addition, the following concepts are introduced.

Grid name represents grid of an axis. This is defined as a name
of a utility function of function-customer need mapping
which is introduced in subsubsection 3.4.3. For example,
20m2 or 28m2 is a grid name of ‘appropriate room size’ (see
Figure 17-⃝2).

Target is a sub class concept of attribute. This represents a grid
name which a product variant is allocated as a target niche.
For example, a product variant C28 aims for a target ‘20m2’
of ‘appropriate room size’ and for a target ‘very thin’ for
‘good looking.’

3.4.3 Utility function model Utility function model
is used to evaluate customer’s satisfaction by utility functions
and attributes (Nomaguchi and Fujita, 2005). The following
additional concepts are introduced to represent the utility
function model.

Satisfaction degreeis a sub class concept of attribute. This
represents a degree of satisfaction of a customer need by a
value of0 to 1.0.

Function-customer need mappingis a sub class concept of
mapping. This represents a set of utility functions which
calculate a satisfaction degree of a customer need by a value
of functional attribute. A utility function is represented
by a quadratic function or an exponential function. For
example, a satisfaction degree of ‘appropriate room size’
is calculated by a value of ‘cooling/warning capacity’ and
utility functions shown in Figure 17-⃝4 .

Entity-function mappingis a sub class concept of mapping.
This represents an equation to calculate a value of functional
attribute. For example, a functional attribute ‘COP (index of
saving energy capacity)’ is calculated by an equationPo/w,
wherePo is a capacity of an outdoor unit andw is a watt
consumption.

3.4.4 QFD QFD(Quality Function Deployment) de-
scribes correlation numbers between customer needs and func-
tions, and ones between functions and components. These cor-
relation numbers are used to deploy weights of customer needs
to weights of components by simple matrix calculation. The fol-
lowing additional concepts are introduced to represent QFD.

C-F relation and F-S relationare both sub class concept of
relation. They are used to represent the existence of
correlation between a customer need and a function, and one
between a function and a component.

Weight is a sub class concept of attribute. It is used to represent
a weight of a customer need, a function and a component.

QFD correlation is a sub class concept of attribute. It is used
to represent the correlation number of a C-F relation or an
F-S relation.

3.4.5 Cost/Worth Graph Cost/worth graph describes
a balance of relative worth between relative cost of a component.
The following additional concepts are defined to represent
cost/worth graph.

Relative worthis a sub class of attribute. This is calculated
by regularization of weights of components which are
calculated by QFD.

Cost is a sub class concept of attribute. It is used to represent
cost of a component.

Relative costis a sub class concept of attribute. It is used to
represent relative cost of a component. Its value is calculated
by regularization of cost of components.

4 KNOWLEDGE MANAGEMENT ORIENTED DESIGN
SUPPORT SYSTEM
This research employs a knowledge management oriented

design support system which we have been developing
(Nomaguchiet al., 2004) in order to support reflective process of

8 Copyright c⃝ 2006 by ASME

designing product architecture and product family. This section
explains the features of the system to formally capture reflective
design process.

4.1 Data Consistency Management based on JTMS
A TMS (Truth Maintenance System) has been used in

artificial intelligence research groups in order to cache for
all inferences ever made (e.g., Doyle, 1979). This research
employs a simple justification-based TMS mechanism to capture
all design states and to track each of them anytime without
redundancy and incorrectness. Any state of designing product
architecture and product family is described as a network graph
of concept nodes which are defined by Section 3. Each concept
node is recorded inIn node list, which keeps active concept
nodes, orOut node list, which keeps inactive concept nodes, at
a certain design state. When a new concept nodenn is going
to be added, a JTMS mechanism maintainsIn/Out of nodes by
following procedure;

(i) SearchingIn/Out node list to find a concept nodens which
is the same asnn.

(ii) If ns is found, addingns to In node list andnn := ns.
(iii) Adding a justification tonn from nodes which are associated

with nn.
(iv) Collecting nodesCon(nn), which are contradictory tonn.
(v) Adding all nodes inCon(nn) to Outnode list.

(vi) Adding all nodes, which are justified only by a node in
Con(nn), to Outnode list.

Here, asamenode is defined as follows; a node which has the
same properties and the same associated nodes. Acontradictory
node is defined as follows; a node which violates a definition of
association. However, there are some exceptions. For attribute
value concept, for example, a contradictory node is defined as
follows; a node which has the same properties, and has an
association to the same attribute and the same instance.

4.2 Capturing Argumentation by Design Operation
As stated in Subsection 2.2, this system automatically

generates an argumentation description to externalize reflective
design process by a log of design operations which a designer
has performed. Figure 2 illustrates the relationship between a
log of design operations and argumentation model.

4.2.1 Argumentation model This research employs
IBIS (Kunz and Rittel, 1970) based argumentation model. IBIS
represents argument structure that includes issues and their
positions by a network graph. Figure 13 depicts IBIS model. The
model consists of the three types of node.Issueis a node, which
represents an issue discussed in argument.Positionis a node that
represents one of multiple alternative solutions to an issue. A

Issue
responds-to

Issue
Issue
Issue

raises

Argument

support

or object-to

Position

Figure 13. Argument model — IBIS —

position node has a relationrespond-toto an issue, to which a
position gives a solution. A position node can be followed by
an issue node, when a new issue is raised from a position. In
this case, a relationraise is defined between a position node and
an issue node.Argumentis a node that represents an argument
among multiple positions. If an argument supports a position, a
relationsupportis defined between them. If an argument objects
to a position, a relationobjected-tois defined.

Each node has the following properties.

Text description: a description that explains contents of an
IBIS node.

Operation type: a name of design operation by which an IBIS
node is generated.

Focused node list: a list of concept nodes in a product
architecture/family model that is argued in an IBIS node.

Design state list: a list of design states in which an IBIS node
is generated.

4.2.2 Generating argumentation structure A de-
sign operation takes an important role for generating an argu-
mentation structure. A design operation is defined; an operation
on a design object model which explicitly defines its purpose and
means. This research defines 29 design operations for product
architecture/family design process. Figure 14 shows defined de-
sign operations. Figure 15 shows a definition ofdevelop function
of product architecture. A design operation definesoperation
primitives, which are operations to JTMS as explained in Sub-
section 4.1. When a design operation is performed, operation
primitives of the list are performed.

A design operation definesreferred concept nodes, which are
requisites of an operation, andadded concept nodes, which are
added as a result of an operation. In Figure 15, a function node is
referred and multiple function nodes are added as a result of this
operation.

Under the above definition of design operations, the
following procedure generates IBIS description after a design
operationOn is performed;

(i) Creating a new issue nodeIn, which has referred concept
nodes ofOn in its focused node list, and has operation name
of On in its operation type.

(ii) Searching an issue nodeIs which is the same asIn. If Is is
found,In := Is.

9 Copyright c⃝ 2006 by ASME

Product architecture Product variant

Set product architecture name Set product names

Set toplevel customer needs

Develop customer needs

Set toplevel customer needs

Develop customer needs

Prescriptive model

 -

Value graph

Market Segment
Grid

Set grid for customer needs

Function-Structure
Mapping

Set toplevel function

Develop function

Set toplevel entity

Develop entity

Set toplevel function

Develop function

Set toplevel entity

Develop entity

QFD Set correlation between

 customer needs and functions

Set correlation between

 function and entities

Set weight of customer needs

Cost/Worth graph Set cost of entity

Utility function Set module alternatives

Set commonalization

Set attribute of entity

Set attribute of function

Set entity-function mapping

Set function-customer needs mapping

Set constraint

Set target segment

Set attribute value of entity

Select module

Figure 14. Design operation

Operation name: Develop function of product architecture

Refered nodes: function : Function

Added nodes: subFunctions : Function [*]

Purpose: To decompose function to sub functions.

Means: To add subFunctions as sub functions of function.

Operation primitives: adding Function nodes, adding Hierarchy node

.

Figure 15. Design operation example

(iii) Creating a new position nodePn, which has added concept
nodes ofOn in its focused node list, and has operation name
of On in its operation type.

(iv) Searching a position nodePs which is same asPn. If Ps is
found,Pn := Ps.

(v) Searching a position nodePn−1, which focused node list
contains at least one of focused nodes ofIn.

(vi) Connectingraisedrelation fromPn−1 to In.
(vii) Connectingrespond-torelation fromIn to Pn.

Here, asameIBIS node is defined as follows; a node which
has the same operation type and the same focused node list.

5 IMPLEMENTATION
5.1 System Architecture

Based on the discussion above, a knowledge management
oriented support system for product architecture and family

Value graph editor

QFD matrix browser

F-S mapping editor

Market segment grid editor

Cost/worth browser

Utility function editor

Module alternative editor

Commonalization editor

D
e

s
ig

n
 o

p
e

ra
ti
o
n

Argumentation

model

Design state

transition model

Designer
Client computer

DB

server

Descriptive models

C
h
a
n

g
e

d
e

s
ig

n
 s

ta
te

R
e

c
o

rd

d
e

s
ig

n
 s

ta
te

In
d
e

x
 d

e
s
ig

n

s
ta

te

G
e

n
e

ra
te

is
s
u
e

/p
o

s
it
io

n

C
a

ll
o
p

e
ra

ti
o

n

O
p

e
ra

ti
o
n

to
 m

o
d
e

l

State transition browser

Argumentation editor - Browse/edit

argumentation

- Select design state

- Browse/edit model

- Input design info.

X
M

L
 P

a
rs

e
r

Product

architecture/family

model

Figure 16. System architecture

design was developed in Java programming language (jdk 1.4.1)
on Windows XP. Figure 16 shows the architecture of the system.

Design process on the system is carried out by using
prescriptive models; value graph, function-structure mapping,
market segmentation grid, cost/worth graph, utility function
model, QFD, module alternative browser and commonalization
browser. The system calls design operations to the knowledge
model when a designer input design information on the
prescriptive models. Design process performed by a designer
is automatically recorded in three levels; action level, model
operation level and argumentation level. A designer can edit
description of an argument node. A recorded design process is
stored in database in XML format.

5.2 Design Example
This subsection illustrates an application to designing family

of an indoor unit of an air conditioner for demonstrating the
capabilities of the implemented system. This design example
is based on analysis of a structure of an existing product, and
simulation of its design process.

Figure 17 shows the snapshots of the system while a
designer carried out design of an indoor unit product family. a
designer can edit and browse a product description on graphical
user interfaces of the prescriptive models. In this example, a
designer enumerates six customer needs of indoor unit product
family; thermal management, humidity management, clean air,
good looking and save energy. ‘Thermal management’ is
developed into two customer needs; appropriate room size and
quick warming/cooling (Figure 17-⃝1). A designer picked
up two customer needs as axes of market segment grid; good
looking and appropriate room size. In the grid, six product

10 Copyright c⃝ 2006 by ASME

1

2

6

3

4

5

Figure 17. Prescriptive models used in design process

variants are planned; C28, C40, B28, B40, A28 and A40
(Figure 17-⃝2). Functions and components of each product
variant are designed by function-structure mapping (Figure 17-⃝3
). In order to evaluate a customer’s satisfaction, utility function
model is used (Figure 17-⃝4). In this example, a satisfaction
degree of ‘good looking’ of C28 does not meet the target ‘very
thin’ (Figure 17-⃝5). In order to thin an indoor unit, a thinner
heat exchanger is required. A designer selected a thinnest heat
exchanger module at module alternative browser (Figure 17-⃝6
), and reduced a diameter of a fan rotor which satisfies a size
constraint in order to put a fan rotor inside of a heat exchanger.

This design process is automatically captured as a byproduct
of a designer’s operations on the system. Figure 18 shows a
part of the captured design process in argumentation level. Issue
nodes (blue node with question mark) and position nodes (red
node with exclamation mark) are automatically generated. A
gray node is a discarded position. An argument node (green
node) is added by a designer to explain the branch of position
nodes. Figure 18 shows that four positions is suggested for an
issue of ‘diameter of fan rotor of C28,’ and that one position ‘75’
is employed.

11 Copyright c⃝ 2006 by ASME

Figure 18. Captured argumentation

6 RELATED WORKS
A knowledge modeling method provides a necessary

framework for a design description in all design domains. Many
research groups have conducted this topic. In the domain of
product architecture and family design, knowledge modeling of
design is becoming a hot topic although its ability is still very
limited (Simpson, 2004). Table 1 summarizes six works related
to this research and compares their research aims and features of
modeling ontology with ours.

The research group of NIST (National Institute of Standard
and Technology, U.S.A.) has been developing a knowledge
model called Core Product Model (CPM) toward large-scaled
repository system of design rationale (Fenves, 2001). Wanget
al. (2003) extended CPM to represent an evolution of product
families and rationale of changes involved. They focus on
design repository of rationale of product family deployment so
that their modeling ontology includes concepts, such as version
and series of product variants. However, they don’t care about
knowledge acquisition so much. The concepts about available

module alternatives and commonalization of components are not
considered, which are mainly used at design process rather than
at the result of design.

A configuration framework for mass customization of
products that employs UML is introduced by Felfernig (Felfernig
et al., 2001). They focus on knowledge acquisition and
maintaining knowledge bases. A product description written in
the UML format is automatically translated into an executable
logic representation in order to employ model-based diagnosis
techniques for debugging a faulty configuration knowledge
base, detecting infeasible requirements and for reconfiguring
old configurations. Their knowledge model represents structural
architecture and module alternatives.

To reduce data redundancy when modeling families
of products, the Generic Bill-of-Material (GBOM) concept
developed at the Eindhoven University of Technology allows
all variants of a product family to be specified only once
(Erens and Hegge, 1994). McKayet al. (1996) combined the
GBOM concept with product concepts and software to reduce

12 Copyright c⃝ 2006 by ASME

Table 1. Comparison of related works

N
om

ag
uc

hi
e

ta
l.

20
06

W
an

g
e

ta
l.

20
03

F
el

fe
rn

ig
e

ta
l.

20
01

M
cK

ay
e

ta
l.

19
96

C
la

es
so

ne
ta

l.
20

01

M
or

te
ns

en
e

ta
l.

20
05

N
an

da
e

ta
l.

20
05

Aim Design repository X XX X - - - x

Knowledge

acquisition X - X X x x x

Design support by

prescriptive model X - - x x x x

Modeling Structural

ontology architecture X X X X X X X

Attribute

architecture X x - X - - -

Module alternative X - X - x X -

Product variant X X X X X X X

Commonalization X - - - - - -

Attribute value X X - x - - -

Prescriptive model X - - - - - x

Others P
ro

du
ct

ev
ol

ut
io

n
(v

er
si

on
,s

er
ie

s,
..)

XX; more considered than this research,
X; considered as well as this research,
x; considered but a little,
-; not considered.

data redundancy when considering multiple views, e.g., sales,
manufacturing and assembly. Their knowledge model is useful
for design repository and knowledge acquisition because it
can represent structural architecture, attributes architecture and
module alternatives.

Claesonet al. (2001) uses function-means-trees to create
configurable components that represent a parameterized set of
design solutions. This knowledge model was deployed at
Saab automobile to help control product variety. Mortensenet
al. (2005) proposed PFH (Product Family Hierarchy) diagram
which visualizes structural architecture and a key component
which could be a key of commonalization among product family.
PFH is deployed at the Danish company Martin Professional
A/S. Both knowledge models employ simple ontology of

structural architecture and module alternatives. Although there
is a limitation in evaluating designed architecture reflectively
because the knowledge model represents neither prescriptive
model nor attribute architecture, they succeeded in applying the
knowledge model to company use.

Nandaet al. (2005) proposed a knowledge model based
on OWL (Web Ontology Language) in order to capture, share,
and organize product design contents concepts and contexts
across different phases of the product design process. This
knowledge model represents structural architecture of three
aspects; customer needs functions and components. They
integrate QFD to the knowledge mode.

The most advanced feature of the knowledge model
proposed in this research is to support reflective process of
designing product architecture and product family. This feature
is enhanced by the framework of a knowledge management
oriented design support system. However, in order to effectively
utilize the framework, ontology should be carefully defined
to meet the requirement of the framework; that is, describing
any state of design and integrating prescriptive design models.
Therefore, ontology defined in this research takes a crucial role
to realize the design support system.

7 CONCLUSIONS
This paper proposes a knowledge model for a knowledge

management oriented support system for product architecture
and family design. The ontology of the knowledge model is
defined in order to formally capture any design state of product
architecture and family design, and to integrate prescriptive
design models. The implemented system can support reflective
process of designing product architecture and product family
with the proposed knowledge model. The ability of the system is
evaluated by performing the illustrative example design. Further
studies should be performed to test the ability in practical cases
which is more complicated and large-scaled.

ACKNOWLEDGMENTS
We appreciate Mr. Hiroyuki Itoh of DAIKIN Air-

Conditioning And Environmental Laboratory, Ltd. for his
cooperation to the air conditioner design example. This research
was partially supported by the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for Scientific Research,
17360072, 2005.

REFERENCES
Claesson, A., Johannesson, H. and Gedell, S., 2001, “Platform

Product Development: Product Model a System Structure
Composed of Configurable Components,”In Proceedings
of the DETC’01 ASME 2001 Design Engineering Technical

13 Copyright c⃝ 2006 by ASME

Conferences and Computer and Information in Engineering
Conference, DTM-21714.

Doyle, J., 1979, “A Truth Maintenance System,”Artificial
Intelligence, Vol. 12, No. 3, pp. 231-272.

Erens, F. J. and Hegge, H. M. H., 1994, “Manufacturing
and Sales Co-ordination for Product Variety,”International
Journal of Production Economics, Vol. 37, No. 1, pp. 83-99.

Felfernig, A., Friedrich, G. and Jannach, D., 2001, “Conceptual
Modeling for Configuration of Mass-Customizable Products,”
Artificial Intelligence in Engineering, Vol. 15, pp. 165-176.

Fenves, S. A, 2001, “Core Product Model for Representing
Design Information,”NISTIR 6736, NIST, Gaithersburg, MD,
2001.

Fujita, K., 2002, “Product Variety Optimization under Modular
Architecture,”Computer-Aided Design, Vol. 34, No. 12, pp.
953-965.

Kunz, W. and Rittel, H., 1970, “Issues as elements of information
systems,” Working Paper No. 131, Berkeley, University
of California, Berkeley, Institute of Urban and Regional
Development.

Liao, S., 2003, “Knowledge Management Technologies and
Applications – Literature Review from 1995 to 2002,”Expert
Systems with Applications, Vol. 25, No. 2, pp. 155-164.

Martin, M. V. and Ishii, K., 2002, “Design for Variety:
Developing Standardized and Modularized Product Platform
Architectures,”Research in Engineering Design, Vol. 13, No.
4, pp. 213-235.

McKay, A., Erens, F. and Bloor, M. S., 1996, “Relating Product
Definition and Product Variety,”Research in Engineering
Design, Vol. 8, No. 2, pp. 63-80.

Meyer, M. H., 1997, “Revitalize Your Product Lines Through
Continuous Platform Renewal,”Research Technology Man-
agement, Vol. 40, No. 2, pp. 17-28.

Mortensen, N. H., Munk, L. and Fiil-Nielsen, O., 2005,
“Preparing for a Product Platform - Product Family Hierarchy
Procedure -,”In Proceedings of International Conference on
Engineering Design (ICED 05), 296.45.

Nanda, J., Simpson, T. W., Shooter, S. B. and Stone, R. B, 2005,
“A Unified Information Model for Product Family Design
Management,”In Proceedings of the DETC’05 ASME 2005
Design Engineering Technical Conferences and Computer
and Information in Engineering Conference, 84869.

Nomaguchi, Y., Ohnuma, A. and Fujita, K., 2004, “Design
Rationale Acquisition in Conceptual Design by Hierarchical
Integration of Action, Model and Argumentation,”In
Proceedings of the 2004 ASME Design Engineering Technical
Conferences and Computers and Information in Engineering
Conference, CIE-57681.

Nomaguchi, Y. and Fujita, K., 2005, “Product Architecture De-
sign Process for Model-based Knowledge Management,”In
Proceedings of 15th International Conference on Engineering
Design (ICED 05), 146.81.

Rosenman, M. and Simoff. S. J., 2001, “Conceptual Modeling in
Design (Special Issue),”Artifical Intelligence in Engineering,
Vol. 15, No. 2.

Scḧon, D. A., 1982, The Reflective Practitioner – How
Professionals Think in Action, Basic Books Inc.

Simon, H. A., 1969,The Sciences of the Artificial, The MIT
Press.

Simpson, T. W., 2004, “Product Platform Design and
Customization: Status and Promise,”Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, Vol. 18,
No. 1, pp. 3-20.

Simpson, T. W., Siddique, Zahed and Jiao Jianxin (editors),
2006,Product Platform and Product Family Design, Springer
Science+Business Media, Inc.

Ulrich, K., 1995, “The role of product architecture in the
manufacturing firm,”Research Policy, Vol. 24, No. 3, pp. 419-
440.

Wang, F., Fenves, S. J., Sudarsan, R. and Sriram, Ram. D., 2003,
“Towards Modeling the Evolution of Product Families,”In
Proceedings of the DETC’03 ASME 2003 Design Engineering
Technical Conferences and Computer and Information in
Engineering Conference, CIE-48216.

Wilhelm, B., 1997, “Platform and Modular Concepts at Volkswa-
gen — Their Effect on the Assembly Process,”Transforming
Automobile Assembly: Experience in Automation and Work
Organization, K. Shimokawa, U. J̈urgens and T. Fujimoto,
eds., Springer-Verlag, New York, pp. 146-156.

14 Copyright c⃝ 2006 by ASME

