
Figure 1. Work-flows of design activities (before introducing knowledge-based CAD)

--
*e-mail: noma@mech.eng.osaka-u.ac.jp
†e-mail: simomura@race.u-tokyo.ac.jp
**Maxis C3 is the registered trademark of Maxis Inc.,

Development of Knowledge Code Converter
 for Design Knowledge Management

Yutaka Nomaguchi*

Department of Computer-controlled Mechanical Sys-
tems, Osaka University

Yoshiki Shimomura‡
RACE (Research into Artifact, Center for Engineering),

The University of Tokyo

Abstract

This is a report on a new methodology to manage design knowl-
edge by utilizing a knowledge-based CAD and a prototype sys-
tem named C3 (Cubic; CAD knowledge Code Capacitor) **,
which is being developed using the methodology. C3 facilitates
(i) the automatic generation of a knowledge code for a knowl-
edge-based CAD by processing design documents written in a
natural language, such as English or Japanese, and (ii) automati-
cally generation of a design document written in a natural lan-
guage from the knowledge code. The features of the system fa-
cilitate document-based design knowledge management which
reduces the designer’s load to encode and maintain design
knowledge, because it is easier for a designer to treat a natural
language description than a coded description.

Keywords: knowledge management, knowledge-based CAD,
design document, natural language analysis

1 Introduction

Knowledge management is a crucial issue for manufacturers
[Dieng 2000] because the power of knowledge has been recog-
nized as a very important resource for preserving valuable heri-
tage, learning new things, solving problems, creating core com-
petences, and initiating new situations for both individuals and
organizations [Liao 2003]. Even in the field of design research,
knowledge management has become a hot topic in recent years
[Mekhilef and Deshayes 2003]. Some groups have been imple-
menting design knowledge management systems (i.e., [Yoshioka
and Shamoto 2003]).

Because of this concern, commercial knowledge-based CAD
systems, which are equipped with knowledge bases to store de-
sign rules and design constraints, have been released in succes-
sion i.e., CATIA (Dassault, Inc.) and Unigraphics (Electronic
Data Systems, Inc.,). A knowledge-based CAD is expected to
allow a designer to adopt semi-automated design activities by
accumulated design rules and design constraints and, thus, re-
duces the lead-time for the design. However, in order to utilize

knowledge-based CAD, it is necessary to encode knowledge
before-hand and continue to maintain the encoded knowledge.
This results in a heavy workload for designers.

This is a report of a new methodology to manage design knowl-
edge by utilizing a knowledge-based CAD and a prototype sys-
tem named C3 (Cubic; CAD knowledge Code Capacitor) based
on the methodology. C3 facilitates (i) the automatic generation of
a knowledge code for knowledge-based CAD by processing de-
sign documents written in a natural language, such as English or
Japanese, and (ii) the automatic generation of a design document
written in a natural language from the knowledge code. The fea-
tures of the prototype system reduce the designer’s load for en-
coding and maintaining the knowledge because it’s easier for the
designer to treat a natural language description than a coded de-
scription.

There are four other sections in this paper. In Section 2, the ef-
fects and issues of knowledge-based CAD are discussed based on
the study of actual design activity in a car-component manufac-
turer. The analysis of the study is followed by a proposal of the
methodology of document-based knowledge management in
Section 3. Section 3 is an identification of the outline of C3. In
Section 4, the implementation of C3 is explained, and a design
session is carried out on C3 to show the power of C3. Finally,
Section 5 is a summary of the key points.

2 Effect and issues of knowledge-based CAD

A knowledge-based CAD is a brand-new system that is expected
to support effective design activity with equipped knowledge
bases. Knowledge that can be accumulated in knowledge-based
CAD is categorized into the following three types.

A design rule, which describes design operations and their
condition.
A design constraint, by which design parameters should be sat-
isfied. When a CAD model does not meet a constraint, the
knowledge-based CAD warns and prompts a designer to mod-
ify the model.

A design procedure, which is a procedure of an operation ap-
plied to a CAD model.

In this section, the effects and issues of knowledge-based CAD
are clarified by study of an actual case of a car-component manu-
facturer which introduces knowledge-based CAD into the design
division.

Figure 1 depicts the workflows of the design division before the
knowledge-based CAD was introduced. At the upstream of the
flows, a designer plans a required specifications and required
appearance of a product/component. Through this stage, a
physical and geometric attributes required for a
product/component are decided as a conceptual design solution.

Next, a designer composes a document called a design procedure
document (DPD), which describes procedure to determine the
attributes to meet the required specification and the design
rules/constraints among the attributes. The principal purpose of
composing DPD is to instruct a CAD operator, who is not usually
an expert of design, to build a geometric model of a prod-
uct/component without misunderstanding the design rationale.
The DPD doest not only makes the communication among a de-
signer and a CAD operator smooth but also promotes the explicit
acquisition of design knowledge and its reuse for the efficiency
of future design. This is why the manufacturer makes much of
composing the DPD, although it is burden for the designer to
compose it.

At the final stage of this workflow, the CAD operator interprets
the DPD based on the required specification and then builds a
CAD model on a CAD system.

The introduction of knowledge-based CAD changes the work-
flows as shown in Figure 2. The work to encode knowledge is
added anew after the work to compose the DPD. The encoded
knowledge, which consists of the design rules, constraints, and
the definition of design procedures, realizes semi-automatic de-
sign by knowledge-based CAD. As a result, it reduces the loads
of CAD modeling carried out by CAD operators.

However, the case study also clarifies some suspicions for intro-
ductory effect of knowledge-based CAD.

The first one of them is concerning about the new work, “knowl-
edge encoding,” which is carried out by interpreting the DPD.
The problem is that a person who performs knowledge encoding
should have not only design knowledge for interpreting DPD but
also knowledge of the knowledge code of the particular knowl-
edge-based CAD. However, according to the interview to the
manufacturer, such a double-role expertise does not exist. This is
why either a designer or a CAD operator should take charge of a
knowledge encoder, although it is a heavy load for both. The
second one is that the format of knowledge codes is not incom-

patible among CADs. It is necessary to encode knowledge again
in case the manufacturer executives decide to change the knowl-
edge-based CAD to the other vender’s one. This means that the
introduction of knowledge-based CAD might be risk for the
manufacturer from the viewpoint of knowledge reusing. The third
one is that .it is difficult to maintain knowledge after knowledge
has been finally encoded. In the research field of expert systems,
it has been pointed out that knowledge accumulated in a com-
puter should be maintained by capturing new concepts and re-
moving mistakes, contradictions, and redundancy [Roth 1985].
Unless knowledge has been maintained, it results in rigid design
activities and a reduction in productivity. This is why a knowl-
edge encoder should have kept on maintaining knowledge. How-
ever, it is challenging for humans to read knowledge codes that
were formatted to be processed by computers. This must make
the load of knowledge maintenance so heavy that the beneficial
effect of a knowledge-based CAD may disappear.

The above suspicions for introductory effect of knowledge-based
CAD are quantitavily verified by the following study on annual
loads on (a) CAD modeling, (b) knowledge encoding and (c)
knowledge maintenance before and after introducing a
knowledge-based CAD. This study was based on the interviews
to the designer and the CAD operators concerning of the design
of a part of automobile, of which model-change is conducted
three times a year. Table 1 depicts the results. Note that the unit
is man-day. According to this study, it is sure that introducing
knowledge-based CAD decreased the load of CAD modeling (24
to 2); however, knowledge encoding process takes so many lords
(50) that the total load has gone up by three times the load before
the introduction. After the second year of the introduction, the
load of knowledge encoding decreases because many of the
knowledge encoded in the first year can be reused. However,
knowledge maintenance still requires considerable load (8). This
is why the load reduction by introducing knowledge-based CAD
remains a little (24 to 17), although the load of CAD modeling
falls in less than one tenth of the load before the introduction.

Figure 2. Workflow of design activities (after introducing knowledge-based CAD)

Table 1 Variation of loads by the introduction of knowledge
based CAD

Loads (Man-Day)

C
A

D

M
od

el
in

g

K
no

w
le

dg
e

en
co

di
ng

K
no

w
le

dg
e

m
ai

nt
en

an
ce

Su
m

.

Before introducing
 knowledge-based CAD

24

- - 24

1st year after introducing
 knowledge-based CAD

2

50 10 62

Afterward 2 9 8 17

Making a line passing two points:
(create_line

((#point1 <Point>)
(#point2 <Point>)))

Offsetting a plane:
(create_offsetplane

((#object <Plane>)
 (#direction <Direction>)
 (#distance <Value>)))

Figure 3 Examples of a generic operation for IKC

The above case study unveils that the key to utilize knowledge-
based CAD is knowledge encording and knowledge maintenance.
Besides, the knowledge code should be managed in a generic
format which is independent from a specific knowledge code
format. The approach in this research is document-based
knowledge management, whereby the knowledge code is
managed by the format of the design procedure document written
in a natural language such as Japanese or English, and mutual
exchange between the knowledge code and the design procedure
document is conducted. This approach required the following
three tasks:

1. Converting DPD to a knowledge code;
2. Mutual exchange of knowledge codes among various

knowledge-based CAD systems; and
3. Converting a knowledge code to DPD

3 Framework of kowledge code converter

The knowledge code converter C3 (Cubic: CAD knowledge Code
Capacitor) facilitates the above three tasks in order to realize
knowledge management by utilizing knowledge-based CAD.
This section explains the framework of C3.

3.1 Intermediate knowledge code

At first, this research introduces a concept of Intermediate
Knowledge Code (IKC). IKC is the knowledge code which is
able to express the design rules, design constraints and design
procedures without depending on specific knowledge code for-
mats or specific operations of each knowledge-based CAD. To
introduce such a knowledge code, generic concepts required to
describe design knowledge should be clearly divided from con-
cepts specific for knowledge-based CAD. Once such classifica-
tion could be established, it becomes easier to mutually exchange
knowledge codes between diverse knowledge-based CAD by
mapping concepts of IKC and CAD-specific knowledge codes.

Some related works to IKC can be found. STEP (Standard for
Exchange of Product Model Data: ISO 10303) is the famous
standard format of CAD data, which is independent from specific
CADs to express geometry and product information. In the re-
search field of knowledge sharing, KIF (Knowledge Interchange
Format) is suggested as the generic format for knowledge de-
scription [Genesereth 1992]. As compared to these proceeded
successes, IKC is the new trial to describe design knowledge,
which includes design procedures, design rules, design con-
straints, and geometric operations

This research defined more than 100 generic CAD operations,
such as "offsetting (parallel displacement) a plane” and “making
a line passing two points” as IKCs after consultation with design-
ers who mastered the operations of plural CADs. Figure 3 depicts
the example of IKC. An IKC consists of one operation name, i.e.,
“create_line” and “create_offsetplane” and plural operand names,
i.e., “#point1” and “#object.” A word between “<” and “>,”
which follows an operand name, is a variable name, which refers
description of DPD in the definition of DPD to IKC conversion
rule stated below. Note that the IKC defined here may be updated
by adding knowledge-based CADs.

3.2 Functions of C3

By introducing IKC, the three tasks stated in Section 2 is devel-
oped to the following four functions:

I. To convert the description of DPD to IKC;
II. To convert IKC to CAD-specific knowledge code, called

CKC (CAD Knowledge Code);
III. To convert CKC to IKC;
IV. To convert IKC to the description of DPD;

Table 2 shows the correspondences between the three tasks and
the four functions. An “X” in an intersection indicates the corre-
spondence.

3.3 Components of C3

In order to realize the four functions, this research develops the
four components, which correspond to the function, respectively,
DPD to IKC converter, IKC to CKC converter, CKC to IKC con-
verter and IKC to DPD converter. Figure 4 depicts the architec-

Table 2. Correspondence of processes and tasks of C3

Function.
Task

I II III IV

1. Converting DPD to a knowledge code X X
2. Mutual exchange of knowledge codes X X
3. Converting a knowledge code to DPD X X

Figure 4. The architecture of C3

Figure 7. Algorithm of DPD to IKC converter

Dim hybridShapeSurfaceExplicit1 As Parameters
Set hybridShapeSurfaceExplicit1 = part1.Item(“A1”)
Dim hybridShapePlaneOffset1 As HybridShapePla-
neOffset
Set hybridShapePlaneOffset1 = fac-
tory1.AddNewPlaneOffset(hybridShapeSurfaceExplicit
1, 5, False)

Figure 9. Example of CKC

DPD: Create an offset plane
 from <Plane> <Direction> by <Value>mm
IKC: (create_offsetplane

((#object <Plane>)
(#direction <Direction>)
 (#distance <Value>)))

Figure 6. Example of DPD to IKC conversion rule

ture of C3 which consists of the above four components. In Figure
4, an arrow with a Roman number represents function; and a grey
rectangular node represents a component. The detail of each
component is as follows.

DPD to IKC converter

The DPD to IKC converter is the component that converts natural
language descriptions in the DPD into the IKCs. The description
in the DPD should be written in the format depicted in Figure 5.
Each line in this format corresponds to one description of DPD,
which consists of the following three slots:

Line number: a serial number issued for each description;
Reference name: a name used to designate the geometric ob-
ject created by the description of the line.
Description: text information which describes a design pro-
cedure, a design rule or constraint. A word between ‘<’ and
‘>’ means a reference name referring to the geometric object
which is created by the other line’s description.

In order to convert DPD to IKC, the converter uses the DPD to
IKC conversion rule, which has a syntactic pattern of a document
description of DPD in the condition part and a syntactic pattern
of IKC in the conclusion part. For example, the DPD to IKC
conversion rule depicted in Figure 6 matches to a DPD descrip-
tion “Create an offset plane from face-A upward by 5 mm;” and
the converter generates IKC “(create_offsetplane ((#object face-
A) (#direction upward) (#distance 5))).” When no rule matches to
DPD description, the DPD to IKC converter decides that the de-
scription includes errors, and alerts the user to correct the de-
scription of DPD. The algorithm of the DPD to IKC converter is
depicted in Figure 7.

IKC to CKC converter

The IKC to CKC converter is the component to convert the IKC
to the CKC by the IKC to CKC conversion rule. Because CATIA
V5 is used for a prototyping as stated in Section 4, this research
developed the IKC to CKC converter according to the knowledge
code format of CATIA V5. Figure 8 depicts an example of an
IKC to CKC conversion rule for CATIA V5. A word beginning
with “?” in CKC is an internal variable whose identical name is
automatically assigned by CATIA. The IKC to CKC conversion
rule is specific for a knowledge-based CAD, although the con-
verting mechanism of the IKC to CKC converter is generic.

The IKC to CKC conversion rule has the syntactic pattern of the
IKC in the condition part and the syntactic pattern of the CKC in
the conclusion part. The IKC to CKC converter picks up each
IKC, and search the rule which matches to it. For example, IKC
“ (create_offsetplane ((#object face-A) (#direction upward)
(#distance 5)))” matches to the conversion rule depicted in Figure
8, and it is finally converted to CKC depicted in Figure 9. Be-
cause the converter manages the relationships between variable
names and reference names in IKC (“face-A” and “upward”) and
their internal description in CKC (“A1” and “False”), the former
can be automatically converted to the later.

CKC to IKC converter

The CKC to IKC converter is the component that converts the
CKC into the IKC by the CKC to IKC conversion rule. This con-
version rule has the syntactic pattern of CKC in its condition part
and the syntactic pattern of the IKC in its conclusion part (see
Figure 10). The CKC to IKC conversion rule is specific for a
knowledge-based CAD although the converting mechanism of

No. Ref. Name Description

B1 Bottom-
surface

Create a plane at the position of
<Media-bottom-surface>

B2 Top-surface Create an offset plane from <Media-
top-surface> outside by 5 mm

B3 Left-surface Create an offset plane from <Media-
left-surface> outside by 3 mm

B4 Right-surface Create an offset plane from <Media-
right-surface> outside by 3 mm

B5 Front-surface Create an offset plane from <Media-
front-surface> outside by 5 mm

Figure 5. Design Procedure Document

IKC：
(create_offsetplane

 ((#object <Plane>)
 (#direction <Direction>)
 (#distance <Value>)))

CKC：
Dim ?parameter As Parameters
Set ?parameter = &part.Item(<Plane>)
Dim ?offsetplane As HybridShapePlaneOffset
Set ?offsetplane =
&factory.AddNewPlaneOffset(?parameter, <Value>,
<Direction>)

Figure 8. IKC to CKC conversion rule

IKC:
((create_trim_line)

((#name <name>)
(#object1 <curve>)
(#object2 <support>)
(#direction <direction>)
(#distance <length>)))

DPD:
Ref. Name Description
<name> Create a line by offsetting <curve>

with the support of <support> to the
direction of <direction> by <length>
mm.

Figure 11. Example of IKC to DPD conversion rule

Figure 13. DPD to IKC conversion rule browser (top) and
IKC to CKC conversion rule browser (bottom)

CKC:
Parallel.Name = <name>, Mode = <mode>,
Type = <type>, Curve = <curve>,
Support = <support>, Offset.Mode = <offsetmode>,
Length = <length>, Bothside = <bothside>,
Direction = <direction>

IKC:
((crate_trim_line)

((#name <name>) (#object1 <curve>)
(#object2 <support>)
(#direction <direction>) (#distance <length>)))

Figure 10. Example of the CKC to IKC conversion rule

the CKC to IKC converter is generic.

By using the IKC to CKC converter and the CKC to IKC con-
verter, C3 realizes the mutual exchange of CKC among plural
knowledge-based CADs.

IKC to DPD converter

The IKC to DPD converter is the component that converts the
IKC into the description of the DPD by the IKC to DPD conver-
sion rule. This conversion rule has the syntactic pattern of the
IKC in its condition part and the syntactic pattern of the DPD
description in its conclusion part (see Figure 11).

The IKC to DPD converter and the CKC to IKC converter con-
tribute to DPD generation.

4 Prototyping

4.1 Implementation

The authors have been developing a prototype system of C3
which can generate a knowledge code from a document descrip-
tion as well as a document description of DPD from a knowledge
code. C3 is implemented by C++ programming language on Win-
dows2000. CATIA V5 of Dassault Inc, is used as a sample
knowledge-based CAD for this prototype system. The prototype
system is composed of the DPD to IKC converter, the IKC to
CKC converter for CATIA V5, the CKC to IKC converter for
CAIA V5, and the IKC to DPD converter. The current version of
the prototype system support conversion of DPD written in Japa-
nese and English to CKC, although conversion of CKC to DPD
only supports Japanese.

4.2 Design session

To test and validate the methodology, the authors prepared a
DPD of a media case as an example, and conducted the genera-
tion of the CKC for the CATIA V5 by the prototype system. Fig-

Figure 12. Media case

Figure 14. Regeneration of DPD (written in Japanese) from
the CAD model

Table 3. Variation of loads by the introduction of knowledge
based CAD with C3

Loads (Man-Day)

C
A

D

M
od

el
in

g

K
no

w
le

dg
e

en
co

di
ng

K
no

w
le

dg
e

m
ai

nt
en

an
ce

Su
m

.

Before introducing knowledge-
based CAD with C3

24

- - 24

1st year after introducing knowl
edge-based CAD with C3

2

25 5 32

Afterward 2 6 3 11

ure 12 depicts the CAD model of the media case. Figure 5 depicts
a part of the DPD of the media case. The prototype system could
generate a CKC for CATIA V5, by which the CAD model de-
picted in Figure 12 could be automatically generated. Figure 13
depicts the DPD to ICK / IKC to CKC conversion rule browser,
by which the user can define and edit conversion rules. The pro-
totype system could also regenerate the DPD of the media case
from the CAD model (see Figure 14. Note that generated DPD is
written in Japanese).

4.3 Validation

According to the above experiment, it is confirmed that C3 can
generate a knowledge code and regenerate DPD, by which C3
facilitates the encoding and maintaining knowledge for knowl-
edge-based CAD on the basis of documents written in a natural
language. From the viewpoint of knowledge management, it is
easier for humans to manage a natural language description than
to directly manage a digital description of knowledge codes. The
ability of C3 might serve the utilization of knowledge-based CAD.

To support the above discussion about the effect of C3, the au-
thors conducted the study on annual loads on (a) CAD modeling,
(b) knowledge encoding and (c) knowledge maintenance before
and after introducing a knowledge-based CAD with C3 as the
comparison experiment to the study stated in Section 2. Table 3
depicts the results. Because enough data for long-term analysis
have not yet accumulated, the numbers of “Afterward” row in the
study of this section includes prediction.

At the first year of introducing knowledge-based CAD with C3,
loads of CAD modeling drastically decreases as shown in Section
2; but the total load increases by 8 man-days because the loads of
knowledge encoding and knowledge maintenance arise. However,
the amount increased is smaller than that of the case in which
knowledge-based CAD is solely introduced depicted in Table 1.
This is because C3 facilitates to encode/maintain knowledge at
the format of natural language description in DPD so that the
designers’ workload decreases.

Afterward the second year, the total load will decline to a half of
that before introducing knowledge-based CAD with C3, because
the load of knowledge encoding decreases to one fifth of that of
the first year. The decreased amount of loads balances introduc-
tory cost of knowledge-based CAD.

According to the above study, C3 takes a crucial role to utilize
knowledge-based CAD and to raise its power to manage design
knowledge.

5 Conclusion

This paper reports the framework of the knowledge code con-
verter C3 to utilize knowledge-based CAD towards design
knowledge management, and validates its introductory effect by
conducting the case study. The core ideas of this research are
under patent application in Japan (Serial No. 2002- 338832,
2003-305667) and the United States of America (Serial No.
10/716,557).

Acknowledgements

We would like to acknowledge Mr. Ichiro Koike and Mr. Nori-
yasu Goto of Maxis Inc, who co-operated with the study of load
variation by introducing a knowledge-based CAD in section 2
and 4.1, and the design session in section 4.2. C3 was developed
under the CATIA V5 CAA (Component Application Architec-
ture) Adopter license, which Maxis Inc, acquired from Dassault
Inc.

References
DIENG, R. 2000. Knowledge Management and the Internet, IEEE Intelli-

gent Systems, Vol. 15, No. 3, (2000), pp. 14-17.
GENESERETH,M.R. 1992. Knowledge Interchange Format, In Proceed-

ings of the Conference of the Principles of Knowledge Representa-
tion and Reasoning, Morgan Kaufmann Publishers, pp. 599-600.

LIAO, S. 2003. Knowledge Management Technologies and Applications
- Literature Review from 1995 to 2002, Expert Systems with Appli-
cations, Vol. 25, pp. 155-164.

MEKHILEF, M. AND DESHAYES, P. 2003. Knowledge Management:
A Concept Review, In Proceedings of the ASME Design Engineering
Technical Conferences and Computers and Information in Engineer-
ing Conference, DAC-48745 (in CD-ROM).

ROTH, F. H., et al. 1985. Building Expert Systems, Addison-Wesley
Publishing Company, Inc.,

YOSHIOKA, M. AND SHAMOTO, Y. 2003. Knowledge Management
System for Problem Solving - Integration of Document Information
and Formalized Knowledge -, In Proceedings of the ASME Design
Engineering Technical Conferences and Computers and Information
in Engineering Conference, CIE-48217 (in CD-ROM).

