
An Integration Framework for
Advanced Knowledge-based Design Supports

– A Viewpoint of DRIFT Paradigm –

Yutaka Nomaguchi* and Kikuo Fujita‡

Osaka University

Abstract

This paper discusses possibilities and promises of an advanced
knowledge-based design support system based on a framework
called DRIFT (Design Rationale Integration Framework of Three
layers), which captures reflective design process as a byproduct
of inherent design actions. DRIFT is an integration framework of
three aspects of design process, i.e., action level, model operation
level and argument level. Action level represents a sequence of
design operations. Model operation level represents a state
transition of design states, each of which records a design
snapshot as a set of labels defined over the ontology for
conceptually representing an artifact. A truth maintenance system
(TMS) is adopted to manage model operation level across the
design process. Argument level represents a process of setting
problems and alternatives, which is captured by Issue-based
Information System (IBIS). The linkages among three levels in
principle enable to automatically capture and manage the whole
design process through tracking design operations over a design
support system. This paper introduces an example of DRIFT-
based implementation to show the power of the framework, and
then discusses possibilities and promises of an advanced
knowledge-based design support system.

Keywords: Design knowledge, design process, design rationale,
design support, ontology, reflection-in-action.

1 Introduction

Engineering design is the process for generating a concept of
useful artifact or product based on various kinds of scientific and
engineering knowledge. In other words, an artifact or product is a
shape of knowledge integration, and the design process is for
creating concrete knowledge as a tangible entity. As complexity
of a product increases under progress of science and technology,
advances in welfare, globalization of manufacturing industry, etc.,
the overall volume of knowledge that is operated and created in
the design process exceeds the personal or organizational
capability of memory and management. Schön [1982] stated that
it is insufficient only to apply the already-systematized
knowledge to solve a complex design problem but is important to
dynamically, flexibly and adaptively acquire knowledge through
reflection-in-action, which is trial-and-error design process that
includes framing a problem, suggesting multiple alternatives,
evaluating what-if and accepting or rejecting. As the latter
knowledge is vital in design, a design support system should
capture those reflective aspects of the design process.

We have been developing a framework for an advanced
knowledge-based design support system, called DRIFT (Design
Rationale Integration Framework of Three layers), which can
capture reflective design process as a byproduct of inherent
design actions [Nomaguchi et al. 2004, 2006, 2007].

--

*e-mail: noma@mech.eng.osaka-u.ac.jp
‡e-mail: fujita@mech.eng.osaka-u.ac.jp

A design support system based on DRIFT can capture reflective
design process performed over design tools with minimal
overhead and with the least interference with natural progression
of design activities, and facilitate a designer to do what-if
analysis that would be critical to reflection-in-action. This paper
introduces an example of a DRIFT-based implementation to
show the possibilities and promises of the framework, and then
discusses future works toward an advanced knowledge-based
design support system that captures reflective aspects of design
process more comprehensively.

2 Background

The increasing demand for rationalizing design activities
launches a wide branch of engineering design research.
Knowledge-based approaches have been initiated in 1980s under
the paradigm of expert systems. CATIA [Dassault Inc.,], is a
commercial application of expert system paradigm to an
integrated CAD system. CATIA is a high-end 3D CAD with a
knowledge base that stores design rules and design constraints for
semi-automatic geometric modeling. Although there is a
controversy about effects and limitations of expert system
paradigm, it can be said that it has achieved a constant result such
as a knowledge-based CAD.

A current research challenge of knowledge-based approach
beyond the expert system paradigm is to handle complicated
design knowledge and related information more sophisticatedly
and flexibly. It was a remarkable step that the capability of
knowledge processing has expanded a computational support to
upper streams of design process. Today, ontology-based
knowledge processing is getting much attention for enhancing the
capability of product data management systems, etc. The concept
of ontology is to represent knowledge over shared meta-data and
to manipulate its contextual structure under the standpoint of
computer engineering and apart from design engineering. For
instance, Kitamura has been developed a meta-data schema for
systematically representing functionality of a product based on
Semantic Web technology for the management of the information
content of engineering design documents [Kitamura et al. 2006].
Ontology is originally a term of philosophy that means theory of
existence. From artificial intelligence (AI) point of view, an
ontology is defined as “explicit specification of
conceptualization” [Gruber 1993]. As this definition is widely
accepted in the fields of AI and informatics, this research also
uses the term in this sense.

Another stream of knowledge-based approaches in the design
engineering field is a design-for-X (DFX) methodology. A
purpose of a design methodology is to have prescriptions that
advocate how design should be done in particular circumstances
[Dixon 1987]. Many researchers of engineering design have
proposed various DFX methodologies. Among various DFX
methodologies, QFD (Quality Function Deployment) is a typical
and comprehensive one [Clausing 1994]. It is effective for
exploring and defining design requirements by a sequential
procedure, for instance, across customer’s requirements,
functional realization, manufacturing modules, production
process, etc. By means of its reflective refinement, a designer

gets overall image of a product. While such an instruction is easy
to understand for designers, it consists of some general and
abstract concepts by excluding its case-dependent aspects.
Therefore, it is suggested that QFD promotes more efficient and
effective information sharing and discussion among designers in
practical use [Ohfuji 1990]. Although a DFX methodology is not
a theory established by a scientific law such as physics, it is often
used in actual design cases as a rational prescription of design
contexts.

While paradigms of ontology-based knowledge processing and
DFX methodologies have been developed separately, each takes
a complementary role for an advanced knowledge-based design
support system. Both techniques deal with different aspects of
design contexts as discussed in the above. An approach based on
a DFX methodology can support a designer by means of
prescription of superior design. An information system based on
ontology can manipulate large-scaled and multi-disciplinary
knowledge. Therefore, the integration of both techniques is a
probable framework toward context-rich computer-supported
design environments and it is expected to be a base for
implementing a design support system that has high intensiveness
of various aspects of design knowledge.

3 DRIFT Paradigm

While a DFX methodology gives a prescription of rational design
and an ontology gives a framework to handle various aspects of
knowledge, design process is inevitably iterative and reflective
process due to the open-ended nature of design problems. In
order to solve such a complex design problem, Schön [1982]
stated that it is insufficient only to apply the already-systematized
knowledge but is important to dynamically, flexibly and
adaptively acquire knowledge through reflection-in-action, which
is trial-and-error design process that includes framing a problem,
suggesting multiple alternatives, evaluating what-if and accepting
or rejecting. As the latter knowledge is vital in design, a design
support system should capture those reflective aspects of the
design process.

DRIFT is a software module that dynamically captures such
reflective design process as a by-product of design. DRIFT
facilitates a designer to compare multiple alternatives
concurrently during design process, and to review a rejected
design alternative. Figure 1 shows the outline of the situation that
a designer is involved under a DRIFT system. DRIFT consists of
two subsystems; a subsystem that captures a state transition of
design information and a subsystem that captures an
argumentation structure. The former subsystem adopts a simple
mechanism based on a truth maintenance system (TMS) [Doyle
1979] to capture all design states and to track each of them
anytime without redundancy and incorrectness. The latter
subsystem adopts an IBIS-based model [Conklin et al. 1988] to
represent argumentation structure.

Figure 1. Outline of reflective design process supported by

DRIFT framework

Under the mechanism of DRIFT, each design operation is defined
as a pattern of problem setting and alternative solution in order to
capture both design state transition and an argumentation
structure through an inherent design action. For example, a
design operation that details a customer need of a product is
defined as follows; a problem set by the operation is ‘what are
sublevel customer needs of it?’ and its alternative solution is a set
of its sublevel customer needs. Since the system records all
alternatives suggested as solutions of the problem, a designer can
compare them and review one at any time. An ontology is the
meta-data structure that enables capturing design state transition
and argumentation structures almost automatically through
designer’s inherent design actions. While the system includes a
set of fundamental ontologies for implementing basic
functionality, another set of subsidiary ontologies for capturing
and managing practical and complicated design operations is
needed. Thus it is necessary and essential that a set of specific
ontologies must be formulated for supporting a particular type of
design operations in order to apply a design methodology under
the corresponding context.

As a foundation of DRIFT, an ontology should be formulated for
defining two concepts; taxonomy of design to manage
complicated design information through design process, and
patterns of problem setting to provide design operations. Both of
them are embedded in DFX methodologies. A methodology has
taxonomy of design information by necessity, and has a pattern
of design operation. This is why this research stated that an
ontology extracted from a DFX methodology is valuable for an
advanced knowledge-based design support system. For example,
QFD is a series of two-dimensional tables between system
decompositions in different aspect for mapping and arranging
their consistency and soundness toward product integrity. This
viewpoint implies the following concepts for product
representation and design operations. A product is represented in
different views. It has a top node and is hierarchically and
recursively decomposed into sub-nodes in each view. Associated
nodes are linked each other across difference views. Each node or
linkage has attributes characterized it. Each attribute has a value.

QFD operations are syntactically composed of definition of the
top node, its decomposition into subsidiary nodes, assigning level
of importance to each subsidiary node, assigning level of
contribution of a node in a view to another node in another
associated view, evaluating mapping of levels of importance
across a series of views, and overall procedure and its outcomes
are reflectively refined for accommodating their mutual
compromise. Contextual structure of these all can be a base of
building ontology for supporting a specific design activity under
the knowledge-based design support system.

Figure 2. More rational design through an advanced knowledge-
based design support system based on DFX ontology and DRIFT

Figure 2 briefs the above mentioned roles of a DFX ontology and
DRIFT toward an advanced knowledge-based design support
system. A DFX ontology enhances scalability and multi-
disciplinary of design contexts. DRIFT paradigm enhances
capability of supporting reflection in design in order to handle
more open-ended design problems. By integrating the two axes, a
more context-rich computer-supported design environment that
supports more rationality for more complicated design could be
implemented.

4 Implementation of DRIFT

4.1 Implementation Architecture

In order to demonstrate the validity and promise of DRIFT, a
prototype design support system under a QFD-based cost-worth
analysis method [Fujita et al. 2001] was developed in Java
programming language (jdk 1.4.1) on Windows XP. Figure 3
shows the architecture of the system.

Under the integrated system, a designer carries out design by
using tools of design methodologies; value graph, function-
structure mapping, QFD two-dimensional tables and cost-worth
graph. The system sends design operations to TMS when a
designer input design information on the tools. Design process is
automatically recorded in three levels; action level, model
operation level and argumentation level along designer’s actions
and operations over the embedded tools. A designer can edit
description of an argumentation structure. A recorded design
process is stored in database in XML format.

The following subsections briefs this implementation. The detail
of DRIFT and the prototype system is explained in our articles
[Nomaguchi et al. 2004, 2006, 2007].

Figure 3. Architecture of DRIFT-based system

4.2 Ontology Definition

Before implementation of a DRIFT-based system, an ontology
corresponding to a set of DFX methodologies is configured as a
base of a knowledge-based design support system. An ontology
consists of two layers; model-independent layer, which consists
of concepts independent from any specific design methodology,
and model-dependent layer, which consists of concepts to
represent specific prescriptive design methodologies.

A concept of the latter layer is defined as a subclass of model-
independent layer concepts. The combination of the above two

layers makes an ontology more expansible. When a new design
methodology is integrated to the design support system,
arrangement of new concepts is required only in the model-
dependent layer.

4.3 Model-independent Concepts

The following five concepts are defined as model-independent
concepts. Figure 4 shows the definition in UML (Unified
Modeling Language) format.

Figure 4. Model-independent concepts

Element is the concept that constructs a product. This is

further categorized into three concepts; customer need,
function and entity.

Hierarchy is the concept that represents a hierarchical
relationship between elements. A hierarchy node has an
association to an element, which is a super level node of the
hierarchy, and elements, which are sub level nodes of the
hierarchy.

Relation is the concept that represents a relation between
elements.

Attribute is the concept that represents a character of an
element or a relation. An attribute node has an association
to an element or a relation.

Attribute value is the concept that represents a value of an
attribute. An attribute value node has a value and a value
type as property.

4.4 Model-dependent Concepts

A concept for representing specific methodology is defined as a
subclass of a model-independent concept. There is a possibility
that other concepts are defined in addition to concepts explained
in this subsection when the other methodology is integrated.

Value graph describes development of a top customer need ‘good
product’ into sublevel customer needs. Function-structure
mapping describes development of functions and entities of a
product, and relationships between them. In order to integrate
them in DRIFT, three concepts; customer need, function and
entity, are defined as sublevel concepts of element.

QFD two-dimensional table describes correlation factors between
different aspects such as ones between customer needs and
functions, ones between functions and entities, etc. These
correlation factors are used to deploy weights of customer needs
to weights of entities by simple matrix calculation. The following
additional four concepts are introduced to integrate QFD in the
framework.

C-F relation and F-E relation are both subclass concept of
relation. They are used to represent the existence of
correlation between a customer need and a function, and
one between a function and an entity.

Weight is a subclass concept of attribute. It is used to
represent a weight of a customer need, a function and an
entity.

Relation factor is a subclass concept of attribute. It is used to
represent the correlation factor of a C-F relation or an F-E
relation.

Cost-worth graph describes a balance between relative worth and
relative cost of an entity. The following three additional concepts
are defined to integrate cost-worth graph in the framework.

Relative worth is a subclass of attribute. This is calculated by
regularization of weights of entities which are calculated by
QFD two-dimensional tables.

Cost is a subclass concept of attribute. It is used to represent
cost of an entity.

Relative cost is a subclass concept of attribute. It is used to
represent relative cost of an entity. Its value is calculated by
regularization of cost of entities.

4.5 Patterns of Problem Setting

A design process under the implemented methodologies is, for
example, executed by the following steps; making QFD two-
dimensional tables of a product, estimating cost of entities,
evaluating a balance of cost and worth, and go back to a former
step if necessary. These steps are not proceeded straight forward
but in iterative way. Therefore, a designer is required to
reflectively consider elements, their relations, weights of
customer needs, and cost of entities represented in QFD two
dimensional tables. Ten patterns of problem setting are extracted
for capturing a whole design process in this methodology.

To make QFD two-dimensional tables of a product, a designer
should enumerate elements of each view. Value graph and
function-structure mapping help this process. In these tools, a
designer firstly sets a top element of each view and then he/she
details it to sublevel elements. When three views are considered
in QFD, the following three problems should be considered;
‘what is a top customer need?’, ‘what is a top function?’ and
‘what is a top entity?’

When a designer uses value graph and function-structure
mapping, he/she enumerates elements by detailing an abstract
element to concrete sublevel elements. Detailed sublevel
elements would be often detailed to more concrete sublevel
elements. When three views are considered in QFD, the
following three problems should be considered; ‘what are
sublevel customer needs?’, ‘what are sublevel functions?’ and
‘what are sublevel entities?’

A designer sets weights of customer needs by considering what
kind of customers would be a target of a product. For this
operation, the problem ‘how much is a customer need
important?’ can be considered. The weight is usually marked by
three grades, such as 1, 3, and 9. When customers who care
value-adds of cellular phone are target, for example, the
following mark can be an alternative solution; ‘good quality of
call: 3, fascinating appearance: 3, many value-adds: 9, high
reliability: 1.’

By QFD two-dimensional tables, a designer considers
relationships between elements and relation degrees. Since we
consider three views, there are the following two problem
settings; ‘which functions are related to a customer need?’ and
‘which entities are related to a function?’

A designer estimates cost of entity. For this operation, the
problem ‘how much is cost of entity?’ can be considered.

5 Demonstration on Example Implementation

This section briefly illustrates an application of the implemented
prototype to cellular phone design for demonstrating its
capabilities and promises. In this example, it is assumed that a
product is aimed to Japanese market and that it is equipped with
several value-adds such as camera, music player, electric money,
bar-code scanner, etc.

Figure 5. Alternatives of detailing customer needs

First, a designer enumerates customer needs, functions and
entities of a cellular phone by using value graph and function-
structure mapping. Then, he/she uses QFD matrix to set weights
of customer needs as shown in Part 1 of Figure 5. The weights
are deployed to weights of entities by automatic calculation of
QFD matrix. A designer also sets cost of each entity, and
evaluates balance of relative cost and relative worth of respective
entities over the cost-worth graph, which is shown in Part 1 of
Figure 6. This graph reveals that cost of camera lens would be
higher than its worth. In order to dissolve this unbalance of cost
and worth, it is recommended to a designer to choose either from
among two options, (A) reducing relative cost or (B) increasing
relative worth as shown in Part 1 of Figure 6. Part 2 of Figure 5
shows an alternative of detailing customer needs in order to
increase relative worth of a camera lens. A new customer need,
‘barcode reader,’ is added. A relative worth of a camera lens is
increased by this alternative as shown in Part 2 of Figure 6.

The design process of the above illustrative exercise is
automatically captured as a byproduct of a sequence of design
operations over the system. Figure 7 shows a part of the captured
design process in argumentation level. An issue node (a node
with a question mark) and a position nodes\ (a node with an
exclamation mark) are automatically generated. A crossed node
is a rejected position. An argument node (a node with a words
balloon mark) is added manually by a designer to explain the
branch of position nodes. Figure 7 shows that two positions are
suggested for an issue of detailing a customer need for many
value-adds, and that a position that adopts bar-code reader is
active now. Since all operations and all design states are recorded
under the TMS mechanism, a designer can review discarded
positions at any time for evaluating alternatives if he/she wants to
review any of them again, and he/she can go back to any former
design state.

Figure 6. Revision of cost-worth balance

Figure 7. A part of captured design process

6 Discussion and Future Works

6.1 Capability of DRIFT

Through several experiments on the case studies with the
example problem of Section 5, it is ascertained that the system
can automatically and smoothly record designer’s design process
that includes operations, alternatives and argumentation. Such
functionality facilitates designer’s reflective refinement of
alternatives over the prototype system through making full use of
related methodologies.

Behind the DRIFT, a model operation plays the key role under
the template of the design operation. Its content is described
based on the ontology of design extracted beforehand. In other
words, it is impossible for DRIFT to capture design operations
beyond the concept provided beforehand by the introduced
ontology. The prototype system introduced in Section 4 can
capture reflective design process about designing customer’s
needs, function, entity and its cost-worth balance, but can not
capture design process beyond the implemented DFX
methodology. Therefore, it is necessary to expand the ontology
and the templates of design operations additionally in order to
capture design process that is more complex than such an
example case demonstrated in Section 5.

6.2 Expanding Ontology

It can be said that it should be a fundamental research challenge
to clarify and integrate ontology of a conceptual artifact model
and a design operation toward a more advanced knowledge-based
design support system. The standpoint of our research is that a
DFX methodology should be something related to ontology.
Because a purpose of a DFX methodology is to provide
prescriptions that advocate how design should be done in
particular circumstances, taxonomy of design and a pattern of

design operations are tacitly included in a DFX methodology.
Their meaning is what an ontology is.

The example in Section 5 shows that the contextual structure of
QFD is appropriate as a basis of building ontology for a DRIFTT
system. An ontology of value graph, function-structure mapping
and cost-worth graph is defined with small modification. This
kind of expansions can be expected to be feasible for other DFX
methodologies. For example, FMEA (Failure Mode and Effects
Analysis) contains taxonomy and design operation about failure
mode analysis. Design for assembly, such as Westinghouse
method [Sturges 1992], contains taxonomy and designing
assembly sequence and part geometry. Because these
methodologies assume description of a system structure like one
shown in Subsection 4.3, model-dependent concepts of theses
methodologies could be defined as subclass concepts of the
model-independent concepts. In addition, overall procedure and
its outcomes are reflectively refined for accommodating their
mutual compromise. DRIFT’s functionality is expected to
facilitate designer’s reflective refinement of alternatives over
these methodologies.

In order to effectively and efficiently achieve this expansion, a
principle and guideline should be developed for facilitating
ontology extraction from DFX methodologies because
development of a DFX methodology has been mainly achieved in
empirical ways apart from developing computer support tools for
design.

Our fundamental idea is that an ontology should be defined in
order to support the dynamic aspect of design process that
includes reflection-in-action. Schön [1982] stated that a good
reflective practitioner has some constants such as the languages
that practitioners use to describe reality and conduct experiments,
the appreciative systems they bring to problem setting, and the
overarching theories by which they make sense of what happens
in an artifact. From the viewpoint of promoting reflection-in-
action, ontology of an artifact representation should contain these
constants. In the case of QFD-based cost-worth analysis method
used in the prototype system, for example, the method provides
the language to describe an artifact such as customer needs,
relative worth, cost, and so on. The method provides the
appreciative system of design as a pattern of a design operation.
The method provides the overarching theory that relative cost and
relative worth of each component of an artifact should be
balanced. Of course, this implementation is just an example. A
more general and wider set of ontology should be extracted for
more flexibly and efficiently integrating various kinds of DFX
methodologies and the other design methods. This is an important
future work of this research for enhancing the power of DRIFT
framework.

6.3 Further Expansions

The same expansion can be considerable either for the other
design methods that support downstream of design process, such
as design optimization or physical analysis. An optimization
method provides mathematical formulation and procedures to
find a design solution that minimizes an objective function and
satisfies constraints. However, an optimization critically depends
on a designer's intention because of several natures of
optimization. For example, different design parameters and
design variables are emphasized or neglected depending on
mathematical formulation such as selection of the objectives and
constraints. Therefore, overall procedure of modeling
optimization should be reflectively refined.

It is indispensable to evaluate an artifact based on a mathematical
model of a physical phenomenon in order to rationalize product

design. Physical phenomena are independent from a designer’s
intention. However, models of physical phenomena unavoidably
depend on a designer’s intention. When its focus shifts to
designing a large-scaled and complicated system, analysis of an
artifact becomes a multi-disciplinary problem. It is necessary to
approximate such complicated physical models and selectively
integrate them in order to surely analyze it within reasonable time.
This modeling process should be also reflectively refined.

While some knowledge-based support systems have been
developed to support modeling optimization and modeling
physical phenomena [i.e., Witherell et al. 2007, Grosse et al.
2005], they rarely focus on the above reflective nature of
modeling process. A DRIFT framework would provide break-
through technology either for this direction.

6.4 Challenges beyond DRIFT Paradigm

Capturing design process that is beyond pre-defined ontology is
anyhow indispensable. It is necessary to give a designer the
freedom flexibly describing knowledge outside the frame of
ontology, because some descriptions based on such user’s
intervention would contain important design rationale. In the
prototype system, a designer can manually add the content of an
argument node in IBIS. There are a number of research papers
that tackles user’s-intervention-based capturing. For example,
ADD [Garcia et al., 1992] captures design rationale by
‘designer’s apprentice’ mechanism that asks a designer when
nonstandard parameter value is inputted. JANUS [Fischer et al.,
1996] has a conceptual model of kitchen layout and a knowledge
base to critique a construction design. Such a mechanism that
supports user’s intervention is included in our future works.
However, a careful examination whether the promotion of
intervention does not become an obstruction of designer’s
thinking is also indispensable.

This research does not focus on navigation and retrieval of design
rationale so far. These are also included in our future works.
Because DRIFT captures all actions, their associated model
snapshots, and argumentations in design process, captured design
rationale would contain a ton of information, a part of which is
relatively generic and valuable in a class of design situations, but
the other part of which is relatively specific and useless.
Therefore, extracting a proper subset of design rationale is
another challenge for realizing the power of DRIFT. At least, as
DRIFT captures both of an artifact representation and design
process representation in well-structured format, they will be
valuable context information to retrieve design rationale.

7 Conclusion

This paper discusses possibilities and promises of an advanced
knowledge-based design support system based on a DRIFT
framework, which is a new framework for capturing reflective
design process of practical products. This paper introduces an
example of DRIFT-based implementation to show the power of
the framework, and then discusses future works and challenges of
an advanced knowledge-based design support system. This
application demonstrated that the framework can capture
dynamic aspect of design process in which a designer frames a
problem, suggesting multiple alternatives, evaluating what-if and
accepting or rejecting an alternative with the least interference
with natural progression of design activities. It will help a
designer dynamically, flexibly and adaptively acquire knowledge
through reflection-in-action. Because any design stage contains
reflective refinement of alternatives, the same expansion can be
done for the other DFX methodologies and the other design
methods, such as optimization or physical analysis, when the
issues stated in Section 6 are resolved.

References

CLAUSING, D. 1994. Total Quality Development. A Step-By-Step Guide to
World-Class Concurrent Engineering, ASME Press.

CONKLIN, J., AND BEGEMAN, M. L. 1988. gIBIS: A Hypertext Tool for
Exploratory Policy Discussion, ACM Transactions on Office Information
Systems, Vol. 6, No. 4, pp. 303-331.

DASSAULT, INC. 2007. CATIA V5R17 [online], Available from:
http://www.catia.com/ [Accessed 13th June 2007].

DIXON, J. R. 1987. On Research Methodology towards a Scientific
Theory of Engineering Design, AI EDAM, Vol. 1, No. 3, pp. 145-157.

DOYLE, J. 1979. A Truth Maintenance System, Artificial Intelligence, Vol.
12, No. 3, pp. 231-272.

FISCHER, G., LEMKE, A. C., MCCALL, R. AND MORCH, A. I. 1996.
Making Argumentation Serve Design, Design Rationale – Concepts,
Techniques, and Use (Moran, P., AND Carroll, J. M., Eds.), Lawrence
Erlbaum Associates, Mahwah, New Jersey, USA, pp. 267-293.

FUJITA, K. AND NISHIKAWA, T. 2001. Value-Adds Assessment Method
for Product Deployment across Life Stages through Quality Function
Deployment, Proc. 13th International Conf. on Engineering Design —
ICED ‘01, Design Methods for Performance and Sustainability, pp. 405-
412

GARCIA, A. C. B. AND HOWARD, H. C. 1992. Acquiring Design
Knowledge through Design Decision Justification, AI EDAM, Vol. 6, No.
1, pp. 59-71.

GROSSE, I. R., MILTON-BENOIT, J. M. AND WILEDEN, J. C. 2005.
Ontologies for Supporting Engineering Analysis Models, AI EDAM, Vol.
19, No. 1, pp. 1-18.

GRUBER, T. 1993. A Translation Approach to Portable Ontology
Specifications, Knowledge Acquisition, Vol. 5, No. 2, pp. 199-220.

KITAMURA, Y., WASHIO, N., KOJI, Y., SASAJIMA, M., TAKAFUJI, S. AND
MIZOGUCHI, R. 2006. An Ontology-based Annotation Framework for
Representing the Functionality of Engineering Devices, Proc. DETC’06
ASME 2006 Design Engineering Technical Conf. and Computers and
Information in Engineering Conf, DETC2006-99131.

SCHÖN, D. A. 1982. The Reflective Practitioner – How Professionals
Think in Action, Basic Books Inc.

NOMAGUCHI, Y., OHNUMA, A. AND FUJITA, K. 2004. Design Rationale
Acquisition in Conceptual Design by Hierarchical Integration of Action,
Model and Argumentation, Proc. DETC’04 ASME 2004 Design
Engineering Technical Conf. and Computers and Information in
Engineering Conf, DETC2004/CIE-57681.

NOMAGUCHI, Y., TAGUCHI, T. AND FUJITA, K. 2006. Knowledge Model
for Managing Product Variety and its Reflective Design Process, Proc.
DETC’06 ASME 2006 Design Engineering Technical Conf. and
Computers and Information in Engineering Conf, DETC2006-99360

NOMAGUCHI, Y. AND FUJITA, K. 2007. Ontology Building for Design
Knowledge Management Systems Based on Patterns Embedded in
Design-for-X Methodologies, Proc. of 16th International Conf. on
Engineering Design (ICED ‘07).

OHFUJI, T., ONO, M. AND AKAO, Y. 1990. Quality Function Deployment,
Union of Japanese Scientists and Engineers. (in Japanese)

STURGES, R. H. AND LILANI, M. 1992. Toward an Integrated Design for
an Assembly Evaluation and Reasoning System, Computer Aided Design,
Vol. 24, No. 2, 1992, pp. 67-79.

WITHERELL, P. KRISHNAMURTY, S. AND GROSSE, I. R. 2007, Ontologies
for Supporting Engineering Design Optimization, Journal of Computing
and Information Science in Engineering, Vol. 7. No. 2, pp. 141-150.

	Abstract
	1 Introduction
	2 Background
	3 DRIFT Paradigm
	4 Implementation of DRIFT
	4.1 Implementation Architecture
	4.2 Ontology Definition
	4.3 Model-independent Concepts
	4.4 Model-dependent Concepts
	4.5 Patterns of Problem Setting
	5 Demonstration on Example Implementation
	6 Discussion and Future Works
	6.1 Capability of DRIFT
	6.2 Expanding Ontology
	6.3 Further Expansions
	6.4 Challenges beyond DRIFT Paradigm
	7 Conclusion
	References

