
An Integration Framework for  
Advanced Knowledge-based Design Supports  

– A Viewpoint of DRIFT Paradigm – 
 

 
 
 

Yutaka Nomaguchi* and Kikuo Fujita‡

Osaka University 
 
 
 

 
Abstract 
 
This paper discusses possibilities and promises of an advanced 
knowledge-based design support system based on a framework 
called DRIFT (Design Rationale Integration Framework of Three 
layers), which captures reflective design process as a byproduct 
of inherent design actions. DRIFT is an integration framework of 
three aspects of design process, i.e., action level, model operation 
level and argument level. Action level represents a sequence of 
design operations. Model operation level represents a state 
transition of design states, each of which records a design 
snapshot as a set of labels defined over the ontology for 
conceptually representing an artifact. A truth maintenance system 
(TMS) is adopted to manage model operation level across the 
design process. Argument level represents a process of setting 
problems and alternatives, which is captured by Issue-based 
Information System (IBIS). The linkages among three levels in 
principle enable to automatically capture and manage the whole 
design process through tracking design operations over a design 
support system. This paper introduces an example of DRIFT-
based implementation to show the power of the framework, and 
then discusses possibilities and promises of an advanced 
knowledge-based design support system. 
 
Keywords: Design knowledge, design process, design rationale, 
design support, ontology, reflection-in-action. 
 
 
 
1 Introduction 
 
Engineering design is the process for generating a concept of 
useful artifact or product based on various kinds of scientific and 
engineering knowledge. In other words, an artifact or product is a 
shape of knowledge integration, and the design process is for 
creating concrete knowledge as a tangible entity. As complexity 
of a product increases under progress of science and technology, 
advances in welfare, globalization of manufacturing industry, etc., 
the overall volume of knowledge that is operated and created in 
the design process exceeds the personal or organizational 
capability of memory and management. Schön [1982] stated that 
it is insufficient only to apply the already-systematized 
knowledge to solve a complex design problem but is important to 
dynamically, flexibly and adaptively acquire knowledge through 
reflection-in-action, which is trial-and-error design process that 
includes framing a problem, suggesting multiple alternatives, 
evaluating what-if and accepting or rejecting. As the latter 
knowledge is vital in design, a design support system should 
capture those reflective aspects of the design process.  
 
We have been developing a framework for an advanced 
knowledge-based design support system, called DRIFT (Design 
Rationale Integration Framework of Three layers), which can 
capture reflective design process as a byproduct of inherent 
design actions [Nomaguchi et al. 2004, 2006, 2007]. 
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A design support system based on DRIFT can capture reflective 
design process performed over design tools with minimal 
overhead and with the least interference with natural progression 
of design activities, and facilitate a designer to do what-if 
analysis that would be critical to reflection-in-action. This paper 
introduces an example of a DRIFT-based implementation to 
show the possibilities and promises of the framework, and then 
discusses future works toward an advanced knowledge-based 
design support system that captures reflective aspects of design 
process more comprehensively. 
 
2 Background 
 
The increasing demand for rationalizing design activities 
launches a wide branch of engineering design research. 
Knowledge-based approaches have been initiated in 1980s under 
the paradigm of expert systems. CATIA [Dassault Inc.,], is a 
commercial application of expert system paradigm to an 
integrated CAD system. CATIA is a high-end 3D CAD with a 
knowledge base that stores design rules and design constraints for 
semi-automatic geometric modeling. Although there is a 
controversy about effects and limitations of expert system 
paradigm, it can be said that it has achieved a constant result such 
as a knowledge-based CAD. 
 
A current research challenge of knowledge-based approach 
beyond the expert system paradigm is to handle complicated 
design knowledge and related information more sophisticatedly 
and flexibly. It was a remarkable step that the capability of 
knowledge processing has expanded a computational support to 
upper streams of design process. Today, ontology-based 
knowledge processing is getting much attention for enhancing the 
capability of product data management systems, etc. The concept 
of ontology is to represent knowledge over shared meta-data and 
to manipulate its contextual structure under the standpoint of 
computer engineering and apart from design engineering. For 
instance, Kitamura has been developed a meta-data schema for 
systematically representing functionality of a product based on 
Semantic Web technology for the management of the information 
content of engineering design documents [Kitamura et al. 2006]. 
Ontology is originally a term of philosophy that means theory of 
existence. From artificial intelligence (AI) point of view, an 
ontology is defined as “explicit specification of 
conceptualization” [Gruber 1993]. As this definition is widely 
accepted in the fields of AI and informatics, this research also 
uses the term in this sense. 
 
Another stream of knowledge-based approaches in the design 
engineering field is a design-for-X (DFX) methodology. A 
purpose of a design methodology is to have prescriptions that 
advocate how design should be done in particular circumstances 
[Dixon 1987]. Many researchers of engineering design have 
proposed various DFX methodologies. Among various DFX 
methodologies, QFD (Quality Function Deployment) is a typical 
and comprehensive one [Clausing 1994]. It is effective for 
exploring and defining design requirements by a sequential 
procedure, for instance, across customer’s requirements, 
functional realization, manufacturing modules, production 
process, etc. By means of its reflective refinement, a designer 



gets overall image of a product. While such an instruction is easy 
to understand for designers, it consists of some general and 
abstract concepts by excluding its case-dependent aspects. 
Therefore, it is suggested that QFD promotes more efficient and 
effective information sharing and discussion among designers in 
practical use [Ohfuji 1990]. Although a DFX methodology is not 
a theory established by a scientific law such as physics, it is often 
used in actual design cases as a rational prescription of design 
contexts. 
 
While paradigms of ontology-based knowledge processing and 
DFX methodologies have been developed separately, each takes 
a complementary role for an advanced knowledge-based design 
support system. Both techniques deal with different aspects of 
design contexts as discussed in the above. An approach based on 
a DFX methodology can support a designer by means of 
prescription of superior design. An information system based on 
ontology can manipulate large-scaled and multi-disciplinary 
knowledge. Therefore, the integration of both techniques is a 
probable framework toward context-rich computer-supported 
design environments and it is expected to be a base for 
implementing a design support system that has high intensiveness 
of various aspects of design knowledge. 
 
3  DRIFT Paradigm 
 
While a DFX methodology gives a prescription of rational design 
and an ontology gives a framework to handle various aspects of 
knowledge, design process is inevitably iterative and reflective 
process due to the open-ended nature of design problems. In 
order to solve such a complex design problem, Schön [1982] 
stated that it is insufficient only to apply the already-systematized 
knowledge but is important to dynamically, flexibly and 
adaptively acquire knowledge through reflection-in-action, which 
is trial-and-error design process that includes framing a problem, 
suggesting multiple alternatives, evaluating what-if and accepting 
or rejecting. As the latter knowledge is vital in design, a design 
support system should capture those reflective aspects of the 
design process.  
 
DRIFT is a software module that dynamically captures such 
reflective design process as a by-product of design. DRIFT 
facilitates a designer to compare multiple alternatives 
concurrently during design process, and to review a rejected 
design alternative. Figure 1 shows the outline of the situation that 
a designer is involved under a DRIFT system. DRIFT consists of 
two subsystems; a subsystem that captures a state transition of 
design information and a subsystem that captures an 
argumentation structure. The former subsystem adopts a simple 
mechanism based on a truth maintenance system (TMS) [Doyle 
1979] to capture all design states and to track each of them 
anytime without redundancy and incorrectness. The latter 
subsystem adopts an IBIS-based model [Conklin et al. 1988] to 
represent argumentation structure.  
 
 

 
Figure 1. Outline of reflective design process supported by 

DRIFT framework 

 
Under the mechanism of DRIFT, each design operation is defined 
as a pattern of problem setting and alternative solution in order to 
capture both design state transition and an argumentation 
structure through an inherent design action. For example, a 
design operation that details a customer need of a product is 
defined as follows; a problem set by the operation is ‘what are 
sublevel customer needs of it?’ and its alternative solution is a set 
of its sublevel customer needs. Since the system records all 
alternatives suggested as solutions of the problem, a designer can 
compare them and review one at any time. An ontology is the 
meta-data structure that enables capturing design state transition 
and argumentation structures almost automatically through 
designer’s inherent design actions. While the system includes a 
set of fundamental ontologies for implementing basic 
functionality, another set of subsidiary ontologies for capturing 
and managing practical and complicated design operations is 
needed. Thus it is necessary and essential that a set of specific 
ontologies must be formulated for supporting a particular type of 
design operations in order to apply a design methodology under 
the corresponding context. 
 
As a foundation of DRIFT, an ontology should be formulated for 
defining two concepts; taxonomy of design to manage 
complicated design information through design process, and 
patterns of problem setting to provide design operations. Both of 
them are embedded in DFX methodologies. A methodology has 
taxonomy of design information by necessity, and has a pattern 
of design operation. This is why this research stated that an 
ontology extracted from a DFX methodology is valuable for an 
advanced knowledge-based design support system. For example, 
QFD is a series of two-dimensional tables between system 
decompositions in different aspect for mapping and arranging 
their consistency and soundness toward product integrity. This 
viewpoint implies the following concepts for product 
representation and design operations. A product is represented in 
different views. It has a top node and is hierarchically and 
recursively decomposed into sub-nodes in each view. Associated 
nodes are linked each other across difference views. Each node or 
linkage has attributes characterized it. Each attribute has a value.  
 
QFD operations are syntactically composed of definition of the 
top node, its decomposition into subsidiary nodes, assigning level 
of importance to each subsidiary node, assigning level of 
contribution of a node in a view to another node in another 
associated view, evaluating mapping of levels of importance 
across a series of views, and overall procedure and its outcomes 
are reflectively refined for accommodating their mutual 
compromise. Contextual structure of these all can be a base of 
building ontology for supporting a specific design activity under 
the knowledge-based design support system. 
 
 

 
Figure 2. More rational design through an advanced knowledge-
based design support system based on DFX ontology and DRIFT 



Figure 2 briefs the above mentioned roles of a DFX ontology and 
DRIFT toward an advanced knowledge-based design support 
system. A DFX ontology enhances scalability and multi-
disciplinary of design contexts. DRIFT paradigm enhances 
capability of supporting reflection in design in order to handle 
more open-ended design problems. By integrating the two axes, a 
more context-rich computer-supported design environment that 
supports more rationality for more complicated design could be 
implemented.  
 
4  Implementation of DRIFT  
 
4.1 Implementation Architecture 
 
In order to demonstrate the validity and promise of DRIFT, a 
prototype design support system under a QFD-based cost-worth 
analysis method [Fujita et al. 2001] was developed in Java 
programming language (jdk 1.4.1) on Windows XP. Figure 3 
shows the architecture of the system.  
 
Under the integrated system, a designer carries out design by 
using tools of design methodologies; value graph, function-
structure mapping, QFD two-dimensional tables and cost-worth 
graph. The system sends design operations to TMS when a 
designer input design information on the tools. Design process is 
automatically recorded in three levels; action level, model 
operation level and argumentation level along designer’s actions 
and operations over the embedded tools. A designer can edit 
description of an argumentation structure. A recorded design 
process is stored in database in XML format.  
 
The following subsections briefs this implementation. The detail 
of DRIFT and the prototype system is explained in our articles 
[Nomaguchi et al. 2004, 2006, 2007]. 

 
Figure 3. Architecture of DRIFT-based system 

 
4.2 Ontology Definition 
 
Before implementation of a DRIFT-based system, an ontology 
corresponding to a set of DFX methodologies is configured as a 
base of a knowledge-based design support system. An ontology 
consists of two layers; model-independent layer, which consists 
of concepts independent from any specific design methodology, 
and model-dependent layer, which consists of concepts to 
represent specific prescriptive design methodologies. 
 
A concept of the latter layer is defined as a subclass of model-
independent layer concepts. The combination of the above two 

layers makes an ontology more expansible. When a new design 
methodology is integrated to the design support system, 
arrangement of new concepts is required only in the model-
dependent layer. 
 
4.3 Model-independent Concepts 
 
The following five concepts are defined as model-independent 
concepts. Figure 4 shows the definition in UML (Unified 
Modeling Language) format. 

 
Figure 4. Model-independent concepts 

 
Element is the concept that constructs a product. This is 

further categorized into three concepts; customer need, 
function and entity.  

Hierarchy is the concept that represents a hierarchical 
relationship between elements. A hierarchy node has an 
association to an element, which is a super level node of the 
hierarchy, and elements, which are sub level nodes of the 
hierarchy.  

Relation is the concept that represents a relation between 
elements.  

Attribute is the concept that represents a character of an 
element or a relation. An attribute node has an association 
to an element or a relation. 

Attribute value is the concept that represents a value of an 
attribute. An attribute value node has a value and a value 
type as property. 

 
4.4 Model-dependent Concepts 
 
A concept for representing specific methodology is defined as a 
subclass of a model-independent concept. There is a possibility 
that other concepts are defined in addition to concepts explained 
in this subsection when the other methodology is integrated. 
 
Value graph describes development of a top customer need ‘good 
product’ into sublevel customer needs. Function-structure 
mapping describes development of functions and entities of a 
product, and relationships between them. In order to integrate 
them in DRIFT, three concepts; customer need, function and 
entity, are defined as sublevel concepts of element. 
 
QFD two-dimensional table describes correlation factors between 
different aspects such as ones between customer needs and 
functions, ones between functions and entities, etc. These 
correlation factors are used to deploy weights of customer needs 
to weights of entities by simple matrix calculation. The following 
additional four concepts are introduced to integrate QFD in the 
framework. 
 

C-F relation and F-E relation are both subclass concept of 
relation. They are used to represent the existence of 
correlation between a customer need and a function, and 
one between a function and an entity. 

Weight is a subclass concept of attribute. It is used to 
represent a weight of a customer need, a function and an 
entity. 



Relation factor is a subclass concept of attribute. It is used to 
represent the correlation factor of a C-F relation or an F-E 
relation. 

 
Cost-worth graph describes a balance between relative worth and 
relative cost of an entity. The following three additional concepts 
are defined to integrate cost-worth graph in the framework. 
 

Relative worth is a subclass of attribute. This is calculated by 
regularization of weights of entities which are calculated by 
QFD two-dimensional tables. 

Cost is a subclass concept of attribute. It is used to represent 
cost of an entity. 

Relative cost is a subclass concept of attribute. It is used to 
represent relative cost of an entity. Its value is calculated by 
regularization of cost of entities. 

 
4.5 Patterns of Problem Setting 
 
A design process under the implemented methodologies is, for 
example, executed by the following steps; making QFD two-
dimensional tables of a product, estimating cost of entities, 
evaluating a balance of cost and worth, and go back to a former 
step if necessary. These steps are not proceeded straight forward 
but in iterative way. Therefore, a designer is required to 
reflectively consider elements, their relations, weights of 
customer needs, and cost of entities represented in QFD two 
dimensional tables. Ten patterns of problem setting are extracted 
for capturing a whole design process in this methodology.  
 
To make QFD two-dimensional tables of a product, a designer 
should enumerate elements of each view. Value graph and 
function-structure mapping help this process. In these tools, a 
designer firstly sets a top element of each view and then he/she 
details it to sublevel elements. When three views are considered 
in QFD, the following three problems should be considered; 
‘what is a top customer need?’, ‘what is a top function?’ and 
‘what is a top entity?’ 
 
When a designer uses value graph and function-structure 
mapping, he/she enumerates elements by detailing an abstract 
element to concrete sublevel elements. Detailed sublevel 
elements would be often detailed to more concrete sublevel 
elements. When three views are considered in QFD, the 
following three problems should be considered; ‘what are 
sublevel customer needs?’, ‘what are sublevel functions?’ and 
‘what are sublevel entities?’ 
 
A designer sets weights of customer needs by considering what 
kind of customers would be a target of a product. For this 
operation, the problem ‘how much is a customer need 
important?’ can be considered. The weight is usually marked by 
three grades, such as 1, 3, and 9. When customers who care 
value-adds of cellular phone are target, for example, the 
following mark can be an alternative solution; ‘good quality of 
call: 3, fascinating appearance: 3, many value-adds: 9, high 
reliability: 1.’ 
 
By QFD two-dimensional tables, a designer considers 
relationships between elements and relation degrees. Since we 
consider three views, there are the following two problem 
settings; ‘which functions are related to a customer need?’ and 
‘which entities are related to a function?’ 
 
A designer estimates cost of entity. For this operation, the 
problem ‘how much is cost of entity?’ can be considered.  
 
 

5 Demonstration on Example Implementation 
 
This section briefly illustrates an application of the implemented 
prototype to cellular phone design for demonstrating its 
capabilities and promises. In this example, it is assumed that a 
product is aimed to Japanese market and that it is equipped with 
several value-adds such as camera, music player, electric money, 
bar-code scanner, etc.  
 

 
Figure 5. Alternatives of detailing customer needs 

 
First, a designer enumerates customer needs, functions and 
entities of a cellular phone by using value graph and function-
structure mapping. Then, he/she uses QFD matrix to set weights 
of customer needs as shown in Part 1 of Figure 5. The weights 
are deployed to weights of entities by automatic calculation of 
QFD matrix. A designer also sets cost of each entity, and 
evaluates balance of relative cost and relative worth of respective 
entities over the cost-worth graph, which is shown in Part 1 of 
Figure 6. This graph reveals that cost of camera lens would be 
higher than its worth. In order to dissolve this unbalance of cost 
and worth, it is recommended to a designer to choose either from 
among two options, (A) reducing relative cost or (B) increasing 
relative worth as shown in Part 1 of Figure 6. Part 2 of Figure 5 
shows an alternative of detailing customer needs in order to 
increase relative worth of a camera lens. A new customer need, 
‘barcode reader,’ is added. A relative worth of a camera lens is 
increased by this alternative as shown in Part 2 of Figure 6. 
 
The design process of the above illustrative exercise is 
automatically captured as a byproduct of a sequence of design 
operations over the system. Figure 7 shows a part of the captured 
design process in argumentation level. An issue node (a node 
with a question mark) and a position nodes\ (a node with an 
exclamation mark) are automatically generated. A crossed node 
is a rejected position. An argument node (a node with a words 
balloon mark) is added manually by a designer to explain the 
branch of position nodes. Figure 7 shows that two positions are 
suggested for an issue of detailing a customer need for many 
value-adds, and that a position that adopts bar-code reader is 
active now. Since all operations and all design states are recorded 
under the TMS mechanism, a designer can review discarded 
positions at any time for evaluating alternatives if he/she wants to 
review any of them again, and he/she can go back to any former 
design state. 
 



 
Figure 6. Revision of cost-worth balance 

 
 

 
Figure 7. A part of captured design process 

 
6 Discussion and Future Works 
 
6.1 Capability of DRIFT 
 
Through several experiments on the case studies with the 
example problem of Section 5, it is ascertained that the system 
can automatically and smoothly record designer’s design process 
that includes operations, alternatives and argumentation. Such 
functionality facilitates designer’s reflective refinement of 
alternatives over the prototype system through making full use of 
related methodologies. 
 
Behind the DRIFT, a model operation plays the key role under 
the template of the design operation. Its content is described 
based on the ontology of design extracted beforehand. In other 
words, it is impossible for DRIFT to capture design operations 
beyond the concept provided beforehand by the introduced 
ontology. The prototype system introduced in Section 4 can 
capture reflective design process about designing customer’s 
needs, function, entity and its cost-worth balance, but can not 
capture design process beyond the implemented DFX 
methodology. Therefore, it is necessary to expand the ontology 
and the templates of design operations additionally in order to 
capture design process that is more complex than such an 
example case demonstrated in Section 5.  
 
6.2 Expanding Ontology 
 
It can be said that it should be a fundamental research challenge 
to clarify and integrate ontology of a conceptual artifact model 
and a design operation toward a more advanced knowledge-based 
design support system. The standpoint of our research is that a 
DFX methodology should be something related to ontology. 
Because a purpose of a DFX methodology is to provide 
prescriptions that advocate how design should be done in 
particular circumstances, taxonomy of design and a pattern of 

design operations are tacitly included in a DFX methodology. 
Their meaning is what an ontology is. 
 
The example in Section 5 shows that the contextual structure of 
QFD is appropriate as a basis of building ontology for a DRIFTT 
system. An ontology of value graph, function-structure mapping 
and cost-worth graph is defined with small modification. This 
kind of expansions can be expected to be feasible for other DFX 
methodologies. For example, FMEA (Failure Mode and Effects 
Analysis) contains taxonomy and design operation about failure 
mode analysis. Design for assembly, such as Westinghouse 
method [Sturges 1992], contains taxonomy and designing 
assembly sequence and part geometry. Because these 
methodologies assume description of a system structure like one 
shown in Subsection 4.3, model-dependent concepts of theses 
methodologies could be defined as subclass concepts of the 
model-independent concepts. In addition, overall procedure and 
its outcomes are reflectively refined for accommodating their 
mutual compromise. DRIFT’s functionality is expected to 
facilitate designer’s reflective refinement of alternatives over 
these methodologies. 
 
In order to effectively and efficiently achieve this expansion, a 
principle and guideline should be developed for facilitating 
ontology extraction from DFX methodologies because 
development of a DFX methodology has been mainly achieved in 
empirical ways apart from developing computer support tools for 
design.  
 
Our fundamental idea is that an ontology should be defined in 
order to support the dynamic aspect of design process that 
includes reflection-in-action. Schön [1982] stated that a good 
reflective practitioner has some constants such as the languages 
that practitioners use to describe reality and conduct experiments, 
the appreciative systems they bring to problem setting, and the 
overarching theories by which they make sense of what happens 
in an artifact. From the viewpoint of promoting reflection-in-
action, ontology of an artifact representation should contain these 
constants. In the case of QFD-based cost-worth analysis method 
used in the prototype system, for example, the method provides 
the language to describe an artifact such as customer needs, 
relative worth, cost, and so on. The method provides the 
appreciative system of design as a pattern of a design operation. 
The method provides the overarching theory that relative cost and 
relative worth of each component of an artifact should be 
balanced. Of course, this implementation is just an example. A 
more general and wider set of ontology should be extracted for 
more flexibly and efficiently integrating various kinds of DFX 
methodologies and the other design methods. This is an important 
future work of this research for enhancing the power of DRIFT 
framework. 
 
6.3 Further Expansions 
 
The same expansion can be considerable either for the other 
design methods that support downstream of design process, such 
as design optimization or physical analysis. An optimization 
method provides mathematical formulation and procedures to 
find a design solution that minimizes an objective function and 
satisfies constraints. However, an optimization critically depends 
on a designer's intention because of several natures of 
optimization. For example, different design parameters and 
design variables are emphasized or neglected depending on 
mathematical formulation such as selection of the objectives and 
constraints. Therefore, overall procedure of modeling 
optimization should be reflectively refined.  
 
It is indispensable to evaluate an artifact based on a mathematical 
model of a physical phenomenon in order to rationalize product 



design. Physical phenomena are independent from a designer’s 
intention. However, models of physical phenomena unavoidably 
depend on a designer’s intention. When its focus shifts to 
designing a large-scaled and complicated system, analysis of an 
artifact becomes a multi-disciplinary problem. It is necessary to 
approximate such complicated physical models and selectively 
integrate them in order to surely analyze it within reasonable time. 
This modeling process should be also reflectively refined.  
 
While some knowledge-based support systems have been 
developed to support modeling optimization and modeling 
physical phenomena [i.e., Witherell et al. 2007, Grosse et al. 
2005], they rarely focus on the above reflective nature of 
modeling process. A DRIFT framework would provide break-
through technology either for this direction.  
 
6.4 Challenges beyond DRIFT Paradigm 
 
Capturing design process that is beyond pre-defined ontology is 
anyhow indispensable. It is necessary to give a designer the 
freedom flexibly describing knowledge outside the frame of 
ontology, because some descriptions based on such user’s 
intervention would contain important design rationale. In the 
prototype system, a designer can manually add the content of an 
argument node in IBIS. There are a number of research papers 
that tackles user’s-intervention-based capturing. For example, 
ADD [Garcia et al., 1992] captures design rationale by 
‘designer’s apprentice’ mechanism that asks a designer when 
nonstandard parameter value is inputted. JANUS [Fischer et al., 
1996] has a conceptual model of kitchen layout and a knowledge 
base to critique a construction design. Such a mechanism that 
supports user’s intervention is included in our future works. 
However, a careful examination whether the promotion of 
intervention does not become an obstruction of designer’s 
thinking is also indispensable. 
 
This research does not focus on navigation and retrieval of design 
rationale so far. These are also included in our future works. 
Because DRIFT captures all actions, their associated model 
snapshots, and argumentations in design process, captured design 
rationale would contain a ton of information, a part of which is 
relatively generic and valuable in a class of design situations, but 
the other part of which is relatively specific and useless. 
Therefore, extracting a proper subset of design rationale is 
another challenge for realizing the power of DRIFT. At least, as 
DRIFT captures both of an artifact representation and design 
process representation in well-structured format, they will be 
valuable context information to retrieve design rationale. 
 
7 Conclusion 
 
This paper discusses possibilities and promises of an advanced 
knowledge-based design support system based on a DRIFT 
framework, which is a new framework for capturing reflective 
design process of practical products. This paper introduces an 
example of DRIFT-based implementation to show the power of 
the framework, and then discusses future works and challenges of 
an advanced knowledge-based design support system. This 
application demonstrated that the framework can capture 
dynamic aspect of design process in which a designer frames a 
problem, suggesting multiple alternatives, evaluating what-if and 
accepting or rejecting an alternative with the least interference 
with natural progression of design activities. It will help a 
designer dynamically, flexibly and adaptively acquire knowledge 
through reflection-in-action. Because any design stage contains 
reflective refinement of alternatives, the same expansion can be 
done for the other DFX methodologies and the other design 
methods, such as optimization or physical analysis, when the 
issues stated in Section 6 are resolved. 
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