Proceedings of DETC'04

ASME 2004 Design Engineering Technical Conferences and

Computers and Information in Engineering Conference

Salt Lake City, Utah, USA, September 28 — October 2, 2004

DETC2004/CIE-57681

DESIGN RATIONALE ACQUISITION IN CONCEPTUAL DESIGN BY HIERARCHICAL
INTEGRATION OF ACTION, MODEL AND ARGUMENTATION

Yutaka Nomaguchi
Department of Computer-Controlled
Mechanical Systems
Graduate School of Engineering
Osaka University
Suita, Osaka 565-0871, JAPAN
Email: noma@mech.eng.osaka-u.ac.jp
Tel: +81-6-6879-7324, Fax: +81-6-6879-7325

ABSTRACT

This paper proposes a framework for acquiring design
rationale in the conceptual design. Knowledge management
is getting much attention for supporting the early phases of
design process. While the research outcomes on design rationale
might be useful in the direction, their capabilities are still far
from practice. Such outcomes are categorized into model-based,
argumentation-based and action-based frameworks. These
are complementary when knowledge acquisition facility and
explanatory power is considered. This paper introduces the
hierarchical model of design rationale for overcoming the
shortcomings of individual approaches under three frameworks.
It consists of argument level, model operation level and action
level. Argument level represents a designer’s decision making
process. Model operation level represents a sequence of design
operations. A design operation follows and is followed by a
design stage, which records a design snapshot over conceptual
product model. Action level represents design process as a
sequence of operation primitives, which are elementary and
atomic operations on the product model. These linkages of three
levels enable to automatically acquire design rationale through
operation primitives over a design support system.

Keywords: Design Rationale, Design Process, Argument
Model, Conceptual Design

Atsushi Ohnuma
Department of Computer-Controlled
Mechanical Systems
Graduate School of Engineering
Osaka University
Suita, Osaka 565-0871, JAPAN

Kikuo Fujita
Department of Computer-Controlled
Mechanical Systems
Graduate School of Engineering
Osaka University

Suita, Osaka 565-0871, JAPAN

Email: fujita@mech.eng.osaka-u.ac.jp
Tel: +81-6-6879-7323, Fax: +81-6-6879-7325

1 INTRODUCTION

As civilization becomes so matured and manufacturing
becomes so glabal, the key for market success shifts, for instance,
from production cost reduction to life-cycle cost reduction, from
cost-based competition to value-based competition, and so forth.
Such grand trend has formed the research streams of concurrent
engineering, design-for-X methodologies, product family design,
etc. Their underlying meaning in the scope of engineering design
is that the concerns of design activity become more knowledge-
intensive. For example, today’s manufacturers are required to
not only provide each product with high integrity of quality, cost
and delivery but also provide a variety of products continuously
over product families in order to accommodate them to variation
of customers’ requirements (e.g., Fujita and Yoshioka, 2003).
To achieve rational and effective design of such a high-
integrated product family, various kind of design knowledge,
e.g., knowledge of technology, customers’ requirements and cost
estimation, should be managed for its intensive use. Further
since decision-making shifts from operational ones to strategic
ones, the planning phase and conceptual phase in the design
process have become more essential than ever corresponding to
the importance of knowledge. This circumstance must be linked
with that knowledge management becomes one of crucial issues
in manufacturing or business competition.

Copyright © 2004 by ASME

Behind the above trends in design and manufacturing
practice, the stream from knowledge engineering to knowledge
management highlights the role of knowledge acquisition
(Dieng, 2000). In the field of design research, design rationale is
thought to be crucial toward design knowledge management. Its
acquisition has been getting much attention in design research.
Design rationale includes purpose of design, a justification of
logical reasoning in design, a notation of design, a method of
design and all other background knowledge (Moran and Carroll,
1996). Among various research outcomes, an argument model,
i.e., IBIS (Issue Based Information System) (Kunz and Rittel,
1970), is often used to explicitly represent design rationale. It
facilitates to structuralize design process by the network model
including issue, position, argument nodes. However, because
it does not have any linkage to product models, its power is
insufficient to share and reuse design knowledge in complicated
design problems. Such limitation is common among many
frameworks for design rationale, since they aimed to reveal the
knowledge-oriented issues rather than to support practical design
problems. When considering the aforementioned demands on
knowledge management for supporting design activity, this gap
between scientific interests and practical requirements should be
overcome.

This paper proposes a new framework for design rationale
acquisition in conceptual design with aiming the application
to practical design process of complicated problems such as
ones of product families, etc. In the framework, a hierarchical
model of design rationale is introduced for integrating several
approaches, which have been developed under respectively
different viewpoints, design activity is formulated as a set of
design operation primitives, and design rationale is automatically
acquired through such operation primitives over a design support
system. In the following, its concepts, implementation and brief
demonstration are reported.

2 PROBLEM OF DESIGN RATIONALE ACQUISITION
2.1 Three Categories of Approaches

As mentioned above, design rationale has been a theme of
design research. Under the past research progress, Garcia and
Howard (1992) classifies various attempts into three categories;
model-based rationale, argumentation-based rationale, and
action-based rationale. ADCT (Domeshek and Holman, 2002) is
a web-based cooperative design support environments on model-
based design rationale representation. Systems based on this
approach have a conceptual model of the product, which consists
of various background information of design, i.e., customer’s
values, functions, structure, standards, regulations and physical
first-principals. The model-based design rationale can be easily
reused because the model has much explanatory power, while it
is difficult to describe rationale because the model is far from
designer’s thinking process. PHIDIAS (Shipman and MccCall,

Totally Integrated
A Approach

Action-based

Integrated Argumentation-
based

Approach
Isolated

Approach

Design-
Operation-based.

Acquisition Facility

Model-based
.
»

Explanatory Power

Figure 1. Approaches of design rationale acquisition

1997) is a system based on the argument model PHI. It is easier to
describe design rationale than the systems based on model-based
representation, but it is not easy to acquire rationale because a
designer has to designate nodes of statements as issue or position
and their relations. Electronic-Notebook (Lakin et al., 1989)
is a system based on action-based representation. This system
is connected to an integrated design tool environment, and
automatically records logs of the design process performed on
this environment. This approach easily acquires design rationale
because rationale is byproduct of design. This must be a critical
concept to acquire design rationale. However, it is impossible to
reuse captured rationale because it is just a log of design.

The facility to acquire design rationale and explanatory
power of acquired design rationale is in tradeoff as shown
in Fig. 1, when the above approaches are taken in isolated
manner. Of course, the systems stated above usually
integrate plural approaches. King and Banares-Alcantara (1997)
proposed the IBIS-based argument model integrated with the
conceptual product model. ADD (Garcia and Howard, 1992)
and ADD+ (Garcia and de Souza, 1997) are the integrated
implementation systems of argumentation-based and model-
based design rationale, although its product model is specialized
for HVAC systems. PHIDIAS (Shipman and McCall, 1997)
integrates action-based and argumentation-based approaches by
linking the log of the telecommunication tool and the argument
model by keyword matching. These integrated approach
can promote both acquisition facility and explanatory power.
However, it still confronts the limitation unless the three
approaches are totally integrated. Figure 1 indicates that any
totally integrated approach should have explanatory power of
argumentation-based and model-based approach, while it keeps
knowledge acquisition facility of action-based approach.

Copyright © 2004 by ASME

Argument Level

Model Operation Level

Action Level

Operation Operation Operation
Primitive Primitive Primitive

Figure 2. Hierarchical integration model

2.2 Design-Operation-based Approach

Although action-based approach has the best acquisition
facility, the problem is that it is difficult to semantically link
log of actions on design support tools with argumentation-based
design rationale and model-based design rationale. The core
idea proposed in this paper for integrating the tree approaches
is design operation. The design operation is defined as the
explanation of actions on the conceptual product model by
explicitly defining the operation’s purpose and means. The
definition of the design operation includes the set of the
operation primitives on the conceptual product model. Because
of these features, the design operation takes part in respective
design rationale approaches as follows. In the model-based
viewpoint, the designer can carry out design on the conceptual
product model by selecting the pre-defined patterns of design
operation. In the argumentation-based viewpoint, the issue node,
which corresponds to the purpose of the design operation, and
the position node, which corresponds to the means, can be
automatically generated by selecting a design operation. In the
action-based viewpoint, argumentation-based and model-based
design rationale can be acquired by recording the log of design
operation primitives.

2.3 Hierarchical Integration of Design Rationale
Approaches
Figure 2 illustrates the hierarchical model to integrate
action-based, model-based and argumentation-based design

rationale based on the design operation. This model consists of
the three levels; argument level, model operation level and action
level.

Argument level represents a designer’s decision making
process, which contains issue, position and argument nodes.
Model operation level represents a sequence of design operations
on the conceptual product model. A design operation follows
and is followed by a design stage, which records a snapshot of a
conceptual product model at a certain moment.

Action level represents design process by a sequence of
operation primitives. An operation primitive is the most
elementary and atomic operation on the product model.

Model operation level takes the core role in this hierarchical
model. Whenever the designer carries out any design operation
at model operation level, a sequence of operation primitives is
activated at action level and the content of a product model is
changed. This causes generation of issue and position nodes at
the argument level.

2.4 Requirements for Implementation

Before discussing the details of design-operation-based
integration, the requirements for implementing such an approach
is discussed in the following.

2.4.1 Representation of design process The
integrated approach should have a model of the design process
to represent argumentation. Such a model should have the

Copyright © 2004 by ASME

following features.

Representing decision making processes : The design process
is organized based on designer’s decision making. Takeda et
al. (1992), for example, proposed cognitive design process
model, which contains five steps; awareness of problem,
suggestion, development, evaluation and decision. They
used this model for protocol analysis of an actual design
case. This kind of model can explicitly represent and
structuralize design process.

Handling back-and-forth processes : The design process
generally contains back-and-forth iterations. The model
should handle such iterations in which plural alternatives
for the same issue are concurrently evaluated, an issue is
divided to sub-issues, and a designer goes back to a pended
alternative.

Handling diverse types of information : The design process
contains diverse types of information as text, drawings,
figures, and CAD models. The design process model should
be linked with them.

2.4.2 Conceptual model of product To confront
design rationale, a conceptual image of a product which is
just like something in a designer’s brain should be explicitly
represented. Since such contents are so diverse, the terminology
required for precisely distinguishing them become so huge. The
introduction of abstracted schemes over direct representation
can condense them into a relatively small number of patterns
and relationships. By considering this viewpoint, the following
features are important for acquiring design rationale.

Representing conceptual elements and their relations : The
most common method for modeling a product is to divide it
into a conceptual elements and relations among them.

In QFD (Quality Function Development), for example,
a product is developed into a set of elements in different
viewpoints such as functional, structural ones, and their
mapping relationships are assessed for maximizing the
product integrity. Kiriyama et al. (1992) proposed a
metamodel, which is a symbolic network of concepts of a
product. A metamodel represents a topological structure,
attributes of a product, related physical phenomena and their
underlying causality. Nomaguchi and Tomiyama (2002)
used the metamodel as a basis of model-based design
rationale.

This kind of conceptual product models by hierarchical
system decomposition provides powerful representation of
customer’s requirements, functional requirements, physical
first-principals, etc.

Comprehensive operation : Although a conceptual product
model is powerful to represent design rationale, it is
not comprehensive for the designer to operate the model

directly. One of solutions for overcoming this shortage is
to define meta-level operation, which is independent from
a specific product. The meta-level operation is defined as
an explanatory set of operation primitives. If the meta-level
operation can be defined by relevant abstraction, it is more
comprehensive for the designer to use meta-level operation
than to operate the model directly because the designer can
carry out design activity without attention to the operation
primitives.

Integrating design tools and a product model : A designer
is expected to carry out design on a conceptual model of
a product as a workspace as much as possible. To enable it,
various kinds of design support tools, i.e., QFD, value graph,
cost evaluation, a solid modeler, etc., should be integrated
with not only a conceptual product model but also all kinds
of product models.

Regarding comprehensive operation, Yoshioka et al. (2001)
proposed the meta-level operation mechanism of a metamodel-
based design support environment. In this mechanism, every
usual design operation is defined as a sequence of common
primitives. The design support system implements specification
set-up, solution synthesis, model operation, model analysis, etc.
by various sets of operation primitives. This implementation
framework makes the system flexible and robust against model
diversity used in design activity. Such a feature is expected to be
effective for acquiring design rationale as well.

2.4.3 Automatic acquisition of design rationale
The main feature of the design-operation-based approach is to
acquire design rationale as a byproduct of design. The followings
are required additionally to realize it, while the all requirements
stated in the above are necessary as well.

Integrating product model and design process moddl : To
acquire design rationale during design activity, a product
model, which is integrated with various design support tools,
should be integrated with a design process model so as that
a designer implicitly describes his/her design process.

Automatic generation of design process model descrip-
tion: The integration of the product model and design pro-
cess model reduces designer’s workload to describe his/her
design process. Beyond this, it is necessary that design pro-
cess description is automatically generated from a log of op-
erations on a product model.

3 HIERARCHICAL MODEL OF DESIGN RATIONALE
This section discusses the hierarchical model of de-

sign rationale that integrates action-based, model-based and

argumentation-based design rationale. The hierarchical model is

Copyright © 2004 by ASME

responds-to raises
support
< Emphas@ or
ojected-to

emphasis

Argument

Figure 3. Argument model — Extension of IBIS —

the implementation methodology of the design-operation-based
approach.

3.1 Argument Level

Argument level represents designer’s decision making
process. In this research, we developed the argument model
by expanding IBIS (Kunz and Rittel, 1970). Figure 3 depicts
our argument model. This argument model represents decision
making process that includes issues and their positions by the
network graph. The model consists of the following nodes and
associated attributes and relations among them.

Issue is a node, which represents the issue discussed in the
argument. An issue node has the following attributes;

e Text description :
contents of the issue.

e Focused information : information in a product model
that is argued in the issue.

e Designstage: adesign stage in which the issue raised.
(A design stage is explained later.)

a description that explains the

Position is a node that represents an alternative solution to the
issue. The position node has the relation respond-to to the
issue, to which the position give a solution. The position
node can be followed by an issue node, when a new issue
is raised from the position. In this case, the relation raise is
defined between the position node and the issue node. The
position node has the following attributes;

e Text description : a description that explains the
contents of the position.

e Focused information : information in a product model
that is argued in the position.

e Design stage : a design stage in which the position
suggested.

Argument is a node that represents an argument between one or
plural positions. If the argument supports the position, the
relation support is defined between them. If the argument

Mechanism to change
height of a chair?

respond-to

‘ Good operability | Issue

How to regulate Pasition
air pressure?

Figure 4. Example of argument representation

objects to the position, the relation objected-to is defined.
The argument node has the following attributes;

e Text description : a description that explains the
contents of the argument.

e Focused information : information in a product model
which is argued in the argument.

e Design stage: a design stage in which the argument
raises.

Emphasis is a node which represents importance of the
argument. The relation emphasis is defined between the
argument and emphasis node. The emphasis node has the
following attribute.

e Importance: anumber that represents the importance
of the argument.

Text description of each node is written in HTML to handle
various type of information by hyper link. The issue nodes,
the position nodes the argument nodes, emphasis nodes and the
relations between them represents designer’s decision making
process and back-and-forth process in design activity. Figure 4
illustrates an example of argument description in designing a
chair.

3.2 Model Operation Level
Model operation level represents design operations per-
formed on a conceptual product model.

3.2.1 Product architecture model A conceptual
product model, which is developing by our research group for
the research into product variety, is introduced. It is named
‘product architecture model’ for convenience in this paper. It
is a network graph model to represent a product architecture,
which is hierarchical and recursive relations between elements

Copyright © 2004 by ASME

Product AspectRelation |
K
? 0.x
2% «—relatedAspects
Aspect
1 | sublevel aspect
1 hasSublevel Aspect
1
Element 2.*% «relatedEntities 0.* Relation
| hasParameter
0.k
Parameter 2. %—relatedParameters0.* ParameterRelation

Figure 5. UML description of product architecture model

of a product within a certain aspect view and between various
aspect views. Because this model can integrate QFD, cost
evaluation and other design support tools, it can be used as a
workspace of a designer to acquire design rationale. Although
the product architecture model can represent relations among
products within/across product families, this research use it only
to represent a single product. The product architecture model
consists of the following nodes and relations. Figure 5 shows
the UML (Unified Modeling Language) description of product
architecture model.

Product is a node that gathers information about a product. A
product node aggregates plural aspects.

Aspect is an aspect view, e.g., customer’s requirement, function,
and structure, and is associated with its contents to represent
a product. That is, an aspect node represents information
of a product from a certain aspect view. An aspect node
aggregates elements, parameters, relations and parameter
relations.

Element is a node that constructs a product. An element
node has plural parameters. For example, elements of
customer’s requirement aspect are ‘to dry hair,” ‘highly safe,’
etc., elements of function are ‘generate air flow,” etc., and
elements of structure are “fan,” “heater,” etc.

An element node has also one aspect, which is the linkage
to its sub-elements. In the example of a hairdryer shown
in Fig. 6, a structure element ‘hairdryer’ has an aspect
view, which contains ‘heater,” ‘ventilator,” ‘power supply’
and ‘appearance’ elements in its sublevel abstraction.
Furthermore, an element ‘ventilator’ has a sublevel aspect,
which contains ‘fan’ and ‘motor.’

Parameter is a node that represents attribute and character
of an element. A parameter node has a unique value.

T Element
1 Parameter

) Parameter
relation

Sublevel
aip—ﬁ

Figure 6. Hierarchical decomposition of aspects and

elements in the example of hairdryer

For example, a customer’s requirement element ‘to dry
hair’ has a parameter ‘importance,” and a structure element
‘ventilator’ has a parameter ‘wind volume.’

Relation is a node that represents a relation between elements.
For example, ‘mechanical connection’ is defined between
‘fan’ and ‘motor,” and ‘function-structure mapping’ is
defined between a function ‘to ventilate wind’ and a
structure “ventilator.’

Parameter relation is a node that represents a relation between
parameters. A parameter relation has a qualitative or
quantitative equation among the associated parameters.
For example, among a parameter ‘wind volume (W)’ of
‘ventilator,” ‘rotational frequency (n)’ of ‘motor’ and ‘sweep
volume (V) of ‘fan,” a parameter relation ‘W =n * V' is
defined.

Aspect relation is a node that represents a relation between
aspects. A certain type of relations exists between elements
and parameters in different aspects, i.e., “function-structure
mapping’ exists between the function aspect and the
structure aspect. An aspect relation node aggregates this
type of relations. An aspect relation has plural aspects and
aggregates relation nodes and parameter relation nodes.

3.2.2 Design operation The design operation is
defined as a meta-level operation on the product architecture
model. Figure 7 lists the design operations defined for the case
study of designing a screwdriver stated in Section 4. Note that the
lineup of design operations depends on the product model. This
means that new design operations can be augmented by refining
the product architecture model in the future works.

Figure 8 shows the definition of a design operation “Make
function in detail.” The format of the definition of each attributes
is based on JAVA programming language. “Make function in

Copyright © 2004 by ASME

Make customer’s requirement/function/entity in detail
Add customer’s requirement/function/entity

Set basic customer’s requirement/function/entity
Set height

Set width

Set length

Set color

Set torque

Set gear ratio

Set revolution

Set voltage

Set constraint

Set physical relational expression

Edit QFD phase |

Edit QFD phase 1l

Figure 7. List of design operations

Type: Make function in detail
Referred information: Function referredFunction;
Added information: Function addedFunctions(];
Purpose: To develop referredFunction to sub-functions.
Means: To add addedFunctions[] as sub-functions of
referredFunction.
Operation primitives:
developElement(referredFunction,
av = new AspectView());
/loperation primitive
for(i=0;i<n;i++)
addElement(av, addedFunctionsli]);
/loperation primitive

Figure 8. Definition of design operation “Make function

in detail”

detail” is defined as a design operation to add plural functions
to a certain function, which the designer wants to develop. The
slot of operation primitives consists of one operation primitive
developElement and n operation primitives of addElement. The
underlined text represents the variable name, and bolded text
represents the operation primitive.

The attributes of a design operation is explained with the
example of Fig. 8.

Type: This indicates the type of design operations which are
listed in Fig. 7, i.e., “Set height” and “Make function in
detail”

Referred information type : This is the type of information
of the product model, which is referred in execution of the
design operation. As shown in Fig. 8, referred information

type of “Make function in detail” is a single function. In the
implemented design system, the content of this information
is input by a designer.

Added information type : This is the type of information of
the product model, which is added as a result of the design
operation. As shown in Fig. 8, added information type of
“Make function in detail” is the set of functions. The content
of the information is inputted by a designer.

Purpose: This is text description that represents the purpose of
the design operation. This is used when the generated text
description of the issue node is defined. In case of “Make
function in detail,” for example, the generated text of the
issue node is “How to develop a function referredFunction
to sub functions?” (see Fig. 11)

Means : This is text description which represents the means
to complete the design operation. This is used when the
generated text description of the position node is defined. In
case of “Make function in detail,” for example, the generated
text of the position node is “Function addedFunctions[] are
generated as sub functions.” (see Fig. 11)

Operation primitives : This is a sequence of operation
primitives automatically performed at action level when the
design operation is carried out.

The assumption here is that design process on the product
architecture model can be represented as a sequence of the design
operations defined by this framework. Whenever a designer
performs the design operation, the operation primitives defined
in the design operation are activated to change the product
architecture model. For each design operation, a script to
generate description of the issue node and the position node
in the argument model is defined (see Fig. 11). This script
is activated when the design operation is performed, and then
the description of the argument model which corresponds to
the design operation is generated. The detail algorithm of this
generation is stated in Subsection 3.4.

3.2.3 Design stage A design stage is a node that
records a snapshot of the product model at a certain moment.
When a designer performs the design operation, the new design
stage is automatically created and it records a new snapshot of
the product model, which is changed as a result of the performed
design operation. Because the preceding design stage is not
vanished, the designer can turn back to a former design stage
to which he/she wants. This can be done by selecting the node of
the argument model, because it has link to the design stage (see
Subsection 3.1).

3.3 Action level
Action level represents design process by operation
primitives on the product model. We define an operation

Copyright © 2004 by ASME

addProduct

[Product |
addAspect
addSublevelAspect v
—»] Aspect
addAspectRelation

addEIement‘

] Element | | AspectRelation |

addParameter addRelation
| Parameter | | Relation |

addParameterRelation

Y
[ParameterRelation |

Figure 9. Operation primitives

Type: addElement
Referred information: AspectView referredAV;
Added information: Element addedElement;

Figure 10. Definition of operation primitive “addElement”

primitive, which is a fundamental augmentation of the product
architecture model. We don’t define an elimination operation,
because our aim is to acquire all information of design process.
When the designer wants to eliminate any information of the
product model, he/she can turns back to the former design stage
to perform a proper design operation again.

3.3.1 Operation primitive Because the product archi-
tecture model, which is used as the product model in this re-
search, consists of seven classes as shown in Fig. 5, the eight
types can be defined as a operation primitive as shown in Fig. 9.
The eight operation primitives are required and enough to rep-
resent a fundamental augmentation of the product architecture
model. An operation primitive has the following attributes.

Type : This describes a type of the operation primitive, i.e.,
addElement.

Referred information type : This is the type of information
of the product model that is referred when the operation
primitive is activated. For example, referred information of
addElement is an aspect node to which a new element node
is added.

Added information type : This is type of information of the
product model that is added when the operation primitive is
activated. For example, added information of addElement is
a new added element node.

Figure 10 shows the definition of “add an element” operation.

ArgumentModelNode seletedNode = selectedNode();
if (seletedNode.islssueNode) {
/l'in case issue node is selected
Issue issue = (Issue)seletedNode;

}else {
if (seletedNode.isPositionNode) {

/l'in case position node is selected
Issue issue = new Issue();
I/l generate a new issue node.
issue.setText("How to develop a function "
+ referredFunction.getText
+ "to sub functions?");
/I generate text description of an issue node
issue.setFocus(referredFunction);
Il referredFunction is set as referred information
issue.setDesignStage(designStageBeforDesignOperation);
/'link old design stage to issue node.

1
Position position = new Position();
I/l generate new position node
for(i=0;i<n;i++) {
/I generate text description of an position node
position.addText(""Function
+ addedFunctions]i].getText()
+);
position.addText("are generated as sub functions ");
for (i = 0; i < n; i++) position.addFocus(addedFunctions[i]);
/I added sub functions are set as added information
position.setDesignStage(designStageAfterDesignOperation);
I link new design stage to position node
position.respondsTo(issue);
// add respond-to relation between issue and
/I position node

Figure 11. Script to generate argument model for “Make
function in detail”

3.4 Generation of Argument Representation

A feature of design-operation-based approach is to acquire
design rationale during design activity on the conceptual product
model. This subsection explains the algorithm to generate
the argument representation as a result of performing design
operations over the argument model. This algorithm can generate
the issue and position nodes, while the designer manually
describes the argument nodes.

The generation algorithm of the description of the argument
model is as follows.

(i) The designer selects the design stage to perform the design
operation by selecting the issue node or the position node of
the argument model.

(ii) The designer selects the design operation, and inputs
information required.

Copyright © 2004 by ASME

- Supplement argument model
- Select design stage

Define design operation
'

Designer

I
- Select design operation
- Input required information

Select focused information
|]

v

Client Computer

Change design stage

Design Operation Product
Palette Architecture

Model Browser
Perform
operation
primitives

QFD Matrix
Browser

Product Architecture Model

v Design
Operation
Argume_nt Definition
Data Server Madel Editor
‘f Generate
issue/position
Design nodes
Rationale
DB A 4 .
[Argument Model <

Record design stage

»
- |

T

LAN

1t

Figure 12. System architecture

(iii) The system executes operation primitives of the selected
design operation.
(iv) The system creates the new design stage that records a
snapshot of the product architecture model changed by the
design operation.
The system activates a generation script according to
selected design operation. The script generates the issue
node, the position node, text description of both nodes, raise
and respond-to relation between them. In the case that the
designer selected the issue node at the step (i), the system
just generates a position node and makes respond-to relation
between the selected issue node and generated position node
instead of generating a new issue node. Figure 11 shows
the script of the design operation “Make function in detail.”
The script is described based on the grammar of JAVA. The
underlined text in this figure represents variables shared with
operation primitives (see Fig. 8).
The designer describes contents of the argument node and
the emphasis node.

v)

(vi)

4 IMPLEMENTATION
4.1 System Architecture

Based on the discussions above, an design system for
conceptual design such as establishing product definition with
the feature of design rational acquisition was developed in JAVA
programming language (jdk 1.4.1) on Windows2000 and Solaris
8. Figure 12 shows the architecture of the system. The designer

on the system can perform design by selecting design operation
listed in the design operation palette. The system performs
operation primitives to the product architecture model according
to the selected design operation, and generates issue and position
nodes in the argument model. The designer supplements the
description of argumentation nodes. The system is integrated
with Objectivity/DB, the object-oriented database. The database
system is built on the distributed computer network so that
designers on the network can share design rationale.

4.2 Functions

Because the system is integrated with the object-oriented
database, the system has the function to store/restore design
rationale. Besides, the system has the following functions, some
of which are implemented for the case study of establishing
product definition of a screwdriver.

Representing decision making processes by the argument
model : The system can represent the designer’s decision
making process by the argument model, which consists of
issue, position, argumentation, and emphasis node.

Managing design stages in back-and-forth processes : Each
of the argument model nodes has the design stage, which
records the snapshot of the product architecture model at a
certain moment. This function facilitates the designer to turn
back to previous design stage to redo design by selecting
relevant the argument model node. Each design stage node
has just references to objects of the product architecture

Copyright © 2004 by ASME

model and activates the objects when the design stage is
selected, this function does not waste so much memory
resources of the computer.

Handling diverse type of information by HTML text : The
argument model node has text description written in HTML
text. This enables the designer record diverse types of
information by hyperlinks.

Representing conceptual elements and relations: The system
employs the product architecture model, which facilitates
representation of customer’s requirements, functional
requirements for design, physical structure and their
relations.

Comprehensive operation by design operation : We define
design operations as meta-level operations on the product
architecture model. The system shows the list of design
operations and prompts the designer to select one. The
design operation facilitates the designer to perform design
by comprehensive operation on the product architecture
model.

Integrating QFD into the product architecture model : The
system integrates QFD matrix browser with the product
architecture model. The designer can describe relative
weight of customer’s requirement, relative weight of
relations between customer’s requirement and function /
function and structural component. The QFD facilitates the
designer to evaluate the design alternatives from the view
point of customer’s requirement.

Integrating the product architecture model and the argument
model : The designer can describe the argument model
during design activity by using of the product architecture
model.

Automatic generation of issue/position nodes in the argument
model : The description of issue/position nodes in the
argument model is automatically generated. This function
reduces the designer’s workload to describe the argument
model.

4.3 Design Example

This subsection illustrates an application to designing a
cordless screwdriver for demonstrating the capabilities of the
implemented system. This design example is based on the
structural analysis of the screwdriver, the whole shape and
components of which are shown in Fig. 13. We analyzed
customer’s requirements, functions and QFD matrix of the
screwdriver, and simulated its design process by using of the
system.

Figure 14 shows the snapshot of the system while the
designer carried out the design of a screwdriver. The design
process on the system is carried out by selecting the design
operation, which is listed in the design operation palette
(Fig. 15). At first, the designer selects “Set basic Customer

10

Figure 13. Screwdriver (left) and its components (right)

Value.” The system prompts him/her to input the description of
the basic customer value of the screwdriver. In this case, the
designer described “Turn screw”, and the basic customer value
node is generated in the product architecture model.

After the basic elements in each aspect are represented,
the designer recursively described the detail hierarchy model.
Suppose the designer detail “Turing tool holder unit” in structure
aspect. The designer selects the “Turing tool unit” node in the
product architecture model browser, and selects “Make entity
in detail” design operation. The system prompts to describe
sub elements of the node. In this case, the designer suggested
the mechanism, which holds the turning tool by the spring’s
elastic force, and described its consisting elements “Turning tool
holder case,” “Spring,” “Ball bearing,” “Shaft,” and “Turning
tool.” By this design operation, the issue “What are sub elements
of ‘Turing tool unit’?” and its position “’Turning tool holder
case,” ‘Spring,” ‘Ball bearing,’” ‘Shaft,” and ‘Turning tool.” are
added as sub elements.” are automatically generated. Figure 16
shows an argument representation based on the argument model.
The node marked by ‘2 ’ is the issue node, and the node
marked by ‘7 ’ is a position node. In this case, the designer
suggested other alternative solutions for “Turning tool holder.”
The designer selected the issue node of “What are sub elements
of “Turing tool unit’?” to turn back to the previous design stage.
Then the designer selected the design operation “Make entity in
detail” and described the alternatives. The second solution is the
mechanism, which fixes the turning tool by the small screw bolt.
The third is the mechanism which simply holds it by the elastic
force of the rubber chuck. In Fig. 16, three alternative solutions
are displayed in the argument model.

To evaluate there alternatives, the designer described the
argument for them. In this case, such four argumentation
nodes are created as “light” “low cost,” “safety,” and
“easy attachment.” Figure 17 shows the description of the
argumentation node of “easy attachment” The designer
described “the easier to attach to turning tool holder, the better”
and put the explanatory figure by HTML text. In the argument
model browser, the support link is represented in the green ling,

Copyright © 2004 by ASME

=

ProductArchitectureFrame

[

Product: Screw Driver

[Customers Value | Function | Swucwre |

= DAPalstte [#]E

Upber L ¥ By g tool hotde?

Make Function in detail
Make Entity in detail

Set basic Customervalue
Set basic Function

Set basic Entity

Set Height

Set Width

Set Length

Set Color

Set Torque

Set GearRatio

Set Revolution

Set Customers Value Weight
Set Function Weight

IBISFrame

il ProductArchitectureEvaluateFrame

[

Product : ScrewDriver

QFD Phase \l QFD Phase L!I]

Te rotate turning too
To decelerate motor
Te charge

To transmit ele

To contral ele

To reverse rotative d
To control max fricti

To supply ele
Te hold turning too

To hal

Ta _lank anad an

Up

Down

Weight
To rotate turning taool 9 9(9 |00 |0 |1 (1|9 |0|0]|0
To reverse rotative direction 9 0|0 |9 |0 |01 (8 (0|0O]|0O]|0O
To be carried easily 9 o(0o|OojO |0 |O[O|O]|O|0O]|O
To be light 3 oj|0|0f0|0O|OfO|O|O(0O]O
To be free from cord 9 0|0|0|O0O|O(O(fO (9|9]|0]|0O
To be easily exchanged turning toal 9 0O(0|O O[O0 |O[O0 |0 |0 |0 |04
To be good feel of a material 3 of(o|OojO (0 |O|(O0O|O]|0O ([0]|8
To be good shape 3 o(o|ojO |0 |O|O|O]|O|0O]|8
To be prevent errar 9 g(o|j0f(0|O |0 |O|0O|0O]|9 [0}
Figure 14. System snapshot of designing screwdriver

and the opposing link in the red line. Because the second solution
is supported by all of the four argumentation nodes, the designer
chose it as the best. The designer also can use QFD matrix to
verify the solution (see Fig. 14).

5 DISCUSSION
5.1 Related works

Design-operation-based approach can be evaluated from
the three approaches, i.e., model-based, argumentation-based
and action-based ones. Regarding model-based one, we use
the product architecture model as a conceptual product model.
Regarding argumentation-based one, we use the extended IBIS
model as the argument model. And, regarding action-based
one, we introduce design operation to automatically generate the
description of the argument model.

11

The other aspect of design rationale acquisition is automatic
versus user-intervention (Hu et al., 2000). The automatic
approach assumes that there is a method to capture the
communication among the designers and design teams or
between the designer and the design support system. The
communication records can then be used to extract design
rationale as they evolve during the design process. PHIDIAS
(Shipman and MccCall, 1997) is based on this approach.
PHIDIAS first represents all of its knowledge, including semi-
formal rationale as well as formal representation of physical
objects, facts, and rules, in a common graph-based format. Then
it generates hyper-links to interconnect items of knowledge by
matching key words, regardless of their level of formality. This
approach can reduce workload of the designer to input design
rationale. However, it is difficult to acquire exactly design
rationale but just linking among information. While the system

Copyright © 2004 by ASME

IBISFrame FE

)
Qat are sub elements"turning tool hold

DAPalette

Make Customersvalue in detail il

Make Function in detail |

[Set basic Customervalue
iSet basic Function

Set basic Entity

'Set Height

[Set Width

Figure 16. Alternative solutions described in argument model

Set Length = Input IBIS
Set Color E
Set Torque IBIS Viewer Argument Editor
:el Eearlllal!u Title : |easy attachment
et Revolution . [elenents which compose the entity”turning teol holder ~
Set Customers Value Weight Issue Content
'Set Function Weight R '
:e‘ a:““rsula'“l‘ ol) F’\ L Sub elements ‘turning toal halder® are Entity “urning toal : L
E;:(pqigt;h;:::mm expression \!_/ : Sub elements which satisfy “turning tool holder” are Entity "turning toal *‘f g}
Edit QFD Phase Il Sub elements which satisfy "turning toal holder” are Entity “turning tool ! j v O
Set physical connection
ISet electrical constraint
\Add Function as a result of CostomerValue adde =]
Add Entity as a result of Function added I the easier to attach turning tool to holder , the better
Add Customervalue = Relation hetween Position and Argument (4]
4 »
] L _ |supports
i Set Supports of Objects
W objecto
g . p p T Image URL: filehome/moritunesbitipg Add Image
E%]NBUW-N n ‘ Finish Edit
lower cost Refered Object List
Add Argument Add Refered Object
Emphasis: |1

implemented is categorized into on automatic approaches, it can
acquire not only links of information but also design rationale
based on the argument model. The one of remaining issues
of our system is that the designer has to input the description
of the argument nodes. Garcia and Howard (1992)’s ADD
is based on user-intervention approach. ADD implements a
“designer’s apprentice” mechanism. In ADD, a product model is
represented as a set of parameters. If a designer proposes a value
different from the value that the system expected, the system
asks the designer for justification regarding these differences.
The designer inputs the justification and the system records
it. While the designer should manually input the justification,
this approach has possibility to acquire designer’s implicit
knowledge when the system not officiously but relevantly asks
questions to the designer. Our future works may include
employing this approach to promote the designer to input the

12

Figure 17. Describing arguments

description of the argument node.

5.2 Corporate Application

To record design rationale, a manufacture generally attempts
to document design, which includes not only the result of design
but also background information of design (Suzuki et al., 1996).
Although documentation of design is not the regular work of a
designer, it is reported that a designer spends 23% of his/her
working time for documentation (Crabtree et al. , 1997). This is
because documentation of design is very indispensable to record
(or acquire) design rationale.

The problem is that a designer usually processes background
information in implicit manner so that he/she merely remembers
it after design is completed. Even if he/she records background
information as a memo during design activity, which is not
explicitly structured, it is difficult to systematically manage it

Copyright © 2004 by ASME

once design activity is finished. This causes lack of background
information in documenting design. In order to acquire
background information, documentation of design should be
carried out simultaneously with design activity. Although some
groupware system, i.e., Lotus Notes, can partially support
design documentation by integrating a CAD system and a
word processor, they cannot support documentation itself.
Documenting design during design activity is still heavy load for
a designer.

The system implemented can be expanded to provide the
design documentation environment, which facilitates describing
design document structured by the argument model during
design activity, when the product model is expanded enough.

6 CONCLUSIONS

This paper reported the research exploring a new framework
for acquiring design rationale especially in the conceptual design
stage of practical products. In the framework, the design process,
argument, model operations are hierarchically integrated through
design operation primitives. For ascertaining its fundamental
capabilities, an experimental design system for conceptual
design was implemented and applied to the design problem of
a screwdriver. This application demonstrated that the proposed
framework enables to automatically acquire design rationale
simultaneously with progress of design activity, for a designer
to track recorded rationale afterward, and so forth. Since the
research and implementation has been just started, future works
remain in various directions, such as of user-intervention support,
retrieval and reusing of design rationale, enhancement of product
model and associated design operations, toward practical usage
for product design and development.

ACKNOWLEDGMENTS

The authors appreciate Satoshi ldaka, Yuji Suzuki and
Masafumi Noritsune for their assistance in the design session
and the system development. This research has been carried
out partially at the Strategic Research Base, Handai (Osaka
University) Frontier Research Center supported by the Japanese
Government’s Special Coordination Fund for Promoting Science
and Technology.

REFERENCES

Crabtree, R. A, Fox, M.S., and Baid, N. K., 1997, “Case Studies
of Coordination Activities and Problems in Collaborative
Design,” Research in Engineering Design, Vol. 9, No. 2,
pp. 70-84.

Dieng, R., 2000, “Knowledge Management and the Internet,”
|EEE Intelligent Systems, Vol. 15, No. 3, pp. 14-17.

13

Domeshek, E. A. and Holman, E., 2002, “Web-based
Design Coordination,” Proceedings of the 2002 ASME
Design Engineering Technical Conferences, Paper No.
DETC2002/CIE-34404.

Fujita, K. and Yoshioka, S., 2003, “Optimal Design
Methodology of Common Components for a Class of
Products: Its Foundations and Promise,” Proceedings of
the 2003 ASME Design Engineering Technical Conferences,
Paper No. DETC2003/DAC-48718.

Garcia, A. C. B. and Howard, H. C., 1992, “Acquiring
Design Knowledge through Design Decision Justification,” Al
EDAM, \ol. 6, No. 1, pp. 59-71.

Garcia, A. C. B. and de Souza, C. S., 1997, “ADD+: Including
rhetorical structures in active documents,” Al EDAM, Vol. 11,
No. 2, pp. 109-124,

Hu, X., Pang, J., Pang, Y., Atwood, M., Sun, W. and Regli,
W.C., 2000, “A Survey on Design Rationale: Representation,
Capture and Retrieval,” Proceedings of the 2000 ASME
Design Engineering Technical Conferences, Paper No.
DETC2000/DFM-14008.

King, M. P. J. and Banares-Alcantara, R., 1997, “Extending the
scope and use of design rationale records,” Al EDAM, Vol. 11,
No. 2, pp. 155-167.

Kiriyama, T., Tomiyama, T. and Yoshikawa, H., 1992,
“Qualitative Reasoning in Conceptual Design with Physical
Features,” in Faltings, B. and Struss, P. (eds.): Recent
Advances in Qualitative Physics, The MIT Press, Cambridge,
MA, USA, pp. 375-386.

Kunz, W., and Rittel, H., 1970, “Issues as elements of
information systems,” Working Paper No. 131, Berkeley,
University of California, Berkeley, Institute of Urban and
Regional Development.

Lakin, F., Wambaugh, J., Leifer, L., Cannon, D., and Sivard, C.,
1989, “The Electronic Design Notebook: Performing Medium
and Processing Medium,” Visual Computer, International
Journal of Computer Graphics, Vol. 5, pp. 214-226.

Moran, T. P. and Carroll, J. M., 1996, Design Rationale: Con-
cepts, Techniques, and Use, Lawrence Erlbaum Associates.
Nomaguchi, Y. and Tomiyama, T., 2002, “Design Knowledge
Management based on the Model of Synthesis,” Borg, J. C.
and Farrugia, P. (eds.): Proceedings of The Fifth IFIP WG5.2

Workshop on Knowledge Intensive CAD, pp. 62-81.

Shipman, F.M. 11, and McCall, R.J., 1997, “Integrating different
perspectives on design rationale: Supporting the emergence
of design rationale from design communication,” Al EDAM,
\ol. 11, No. 2. pp. 141-154.

Suzuki, H., Kimura, F., Moser, B. and Yamada, T., 1996,
“Modeling information in design background for product
development support,” Annals of the CIRP, Vol. 45, No. 1,
pp. 141-144.

Takeda, H., Tomiyama, T. and Yoshikawa, H., 1992, “A
Logical and Computable Framework for Reasoning in

Copyright © 2004 by ASME

Design,” Proceedings of the 1992 ASME Design Theory and
Methodology (DTM ‘92), pp. 167-174.

Yoshioka, M., Nomaguchi, Y., and Tomiyama, T., 2001,
“Proposal of an Integrated Design Support Environment
Based on the Model of Synthesis.” Proceeding of the
2000 ASME Design Engineering Technical Conference and
Computersand Information in Engineering Conference, Paper
No. DETC2001/DAC-21155.

14 Copyright © 2004 by ASME

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

