
IJCC Workshop 2006 on Digital Engineering 

Proposal of Knowledge Model for Designing Product 
Architecture and Product Family 

 
 

Yutaka Nomaguchi 
Dept. of Mechanical Engineering, 

Osaka University. 
2-1 Yamadaoka, Suita, Osaka 

Japan, 565-0871 
+81-6-6879-7324 

noma@mech.eng.osaka-u.ac.jp 
 

 
 

Tomohiro Taguchi 
Dept. of Mechanical Engineering, 

Osaka University. 
taguchi@syd.mech.eng.osaka-u.ac.jp 

 
 

Kikuo Fujita 
Dept. of Mechanical Engineering, 

Osaka University. 
fujita@mech.eng.osaka-u.ac.jp 

 
 
 

Abstract 
In order to keep global competences, recent manufacturers have 
been utilizing product families to diversify and enhance the 
product performance by simultaneously designing multiple 
products under commonalization and standardization. Design 
information of product architecture and family is inevitably more 
complicated and numerous than that of a single product. Thus, 
more sophisticated computer-based support system is required for 
product architecture and family design. This paper proposes a 
knowledge model for product architecture and family design 
support system. This research aims to tackle three problems which 
should be overcome when product family are modeled in the 
computer system; design repository without data redundancy and 
incorrectness, knowledge acquisition without forcing the 
additional effort on the designer, and integration of descriptive 
models to support early stage of design. The ontology of the 
knowledge model is defined as a foundation of resolving there 
problems. This paper is concluded with discussion of future works. 

Keywords: Product architecture, product family, knowledge 
model, knowledge acquisition, design support, ontology 

1. Introduction 
As manufactures adapt to a recent highly competitive global 
marketplace, the need to integrity of varying high-end 
performances and cost reduction of product will increase. They 
are utilizing product families to diversify and enhance the product 
performance by simultaneously designing multiple products under 
commonalization and standardization [6]. The key to rationale and 
successful product family design is product architecture [15]. This 
research perceives product architecture as the schema which 
connotes each product variant by defining possible structures and 
possible attribute values. Product architecture is written by three 
aspects; customer needs, functions and entities such as 
components and parts. Good product architecture yields a 
successful product family. Platform design of automobiles, i.e., 
Volkswagen’s A-Platform [17], is a representative example, which 
shows the power of established product architecture. 

Design information of product architecture and family is 
inevitably more complicated and numerous than that of a single 
product. Thus, more sophisticated computer-based support system 
is required for product architecture and family design. One of 
major problems to be overcome when product family are modeled 

in the computer system, is the product description of multiple 
aspects on a product family without data redundancy and 
incorrectness even in large-scaled design repository [8]. The 
second problem is to acquire design knowledge, which is common 
problem for knowledge management systems [2]. The third 
problem is to integrate descriptive models in order to support 
design. Even though many research groups have been tackling the 
computational searching techniques to optimize product 
architecture and family design [14], the stage before the 
optimization should be supported by descriptive methodology. 
From the different points of view, different descriptive models 
have been developed. A designer has to integrate various models 
and switch them in order to reflectively evaluate the design.   

This paper proposes the knowledge model of product architecture 
and family which solves the above mentioned three problems. For 
design repository without data redundancy and incorrectness, this 
research defines ontology of product architecture and family 
design. For knowledge acquisition, the ontology is defined to 
represent not only concepts of a result of design but also concepts 
of any state of design. For integration of descriptive models to 
support early stage of design process, the concepts of the 
descriptive models are defined as an extended part of the ontology. 
This knowledge model serves as a core of a knowledge 
management system which we have been developing to support 
complicated and iterative design process as product architecture 
and family design [12].  

2. Requirements of Knowledge Model 
2.1 Knowledge Acquisition by Iteration 
Design Process 
In general, human’s problem solving including design is done 
through iteration process [13]. The process of product architecture 
and family design also includes iteration process to reflectively 
consider problems such as ‘which product should be in family?,’ 
‘what product architecture should be?,’ ‘which component should 
be commonalized?’ and so on. To support product architecture and 
family design, some descriptive methods have been developed, e.g. 
the market segmentation grid [9] which is to plan family 
deployment strategy, GVI/CI [7] which is the QFD based indices 
to evaluate product architecture from the viewpoint of robustness 
against market changes. Although a designer cannot expect these 
methods to automatically search solutions like optimization 



IJCC Workshop 2006 on Digital Engineering 

methodology, it is valuable for a designer by using the descriptive 
models to document his/her idea and its problem, then to consider 
various ideas reflectively. 

Knowledge takes a crucial role to do effective trials in the 
iteration process as much as possible and to aim at the goal. Some 
of the design knowledge is based on the already-systematized 
theory such as a physical phenomenon. Besides, a designer 
acquires many of knowledge through experiences of iterations as 
know-how. Acquisition of latter design knowledge without 
forcing additional effort on a designer is a key to success in 
knowledge management.  

2.2 Toward Knowledge Management 
Approach 
We have been researching a computer-aided design system to 
acquire a designer’s knowledge, which was used in iterative 
design process, as a by-product of design without forcing 
additional effort on the designer. This system captures design 
process at three levels as shown in Figure 1; log of a designer’s 
action, state transition of design information and argumentation 
structure of a designer’s thinking process. The second and the 
third level represent the iteration process explicitly, and they are 
composed automatically based on the first level. In this framework, 
a knowledge model of design information takes important role. 
The log of a designer’s action is captured as the sequence of 
operations to the knowledge model. The state transition of design 
information is captured as the state transition of the knowledge 
model. The argumentation structure of a designer’s thinking 
process is captured as a structure of purpose and mean of the 
operation. The detailed algorithm can be seen in [12]. 
From the view point of this framework, the knowledge model 
should meet the following requirements. Firstly, the knowledge 
model should record not only the result of design but also the state 
of design at a certain moment of design process. Secondly, the 
knowledge model should integrate various design models to 
represent design information from various aspects such as 
customer needs, functionality, structure and cost. Lastly, the 
operations to the knowledge model should be defined by 
considering its purpose and means, which corresponds to an issue 
and a position of argumentation, respectively. This paper mainly 

discusses the first and the second requirements. The last 
requirement is not discussed in this paper. 

2.3 Modeling Ontology for Product 
Architecture and family Design  
Ontology is a basis of knowledge modeling. Note that we interpret 
ontology in the sense; a theory about the sorts of concepts, 
properties of concepts, and relations between concepts that are 
possible in a specified domain of knowledge. Figure 2 shows the 
ontology layers of the knowledge model defined in this research.  

The UML grammar is the first layer because all concepts of the 
knowledge model are defined in the UML format. The second 
layer is the modeling concepts. This layer is categorized into two 
types; basic concepts and extended concepts. The basic concept is 
the concept to represent generic model which is independent from 
any specific descriptive design model. The extended concept is the 
concept to represent specific descriptive design models.  

The above mentioned layers are built in the computer. Product 
architecture and product variants are modeled as an instance of the 
built-in concepts. By using the modeling concepts, a designer can 
represent his/her knowledge of product architecture and family 
while using descriptive models. 

3. Modeling Product Architecture and 
Product Family 
This section explains the modeling concepts of the knowledge 
model, which is proposed for product architecture and family 
design. Firstly, the illustrative example of screw driver design is 
introduced. The example product architecture and deployed 
product variants are represented by the knowledge model, which 
is described in the UML format. Secondly, concepts of modeling 
ontology are introduced. Finally, the extended concepts to 
integrate descriptive models are introduced.  

3.1 Illustrative Example of Product 
Architecture and Family Deployment 

Position

Purpose Means

State n+2

State n+3

State n-2

State n-1

Position

Issue

Position

State n+1

PositionIssue

State n

Design operation

MeansPurpose MeansPurpose
Action 
level

Model op. 
level

Argumentation 
levelArgument

Position

Purpose Means

State n+2

State n+3

State n-2

State n-1

Position

Issue

Position

State n+1

PositionIssue

State n

Design operation

MeansPurpose MeansPurpose
Action 
level

Model op. 
level

Argumentation 
levelArgument  

Figure 1. Three levels of design process 
 

Figure 2. Ontology layers for product architecture and family 



IJCC Workshop 2006 on Digital Engineering 

This subsection introduces the example used throughout this paper, 
in advance. The design of the electric screw driver product family, 
and the attributes which are used to specify a particular variant, 
are shown in Figure 3 by UML. Rectangle nodes are objects of 
classes which are defined in Figure 5. Figure 3 shows a part of 
entity aspect structure, but it would be enough to understand the 
overview of proposed knowledge model.   
It can be seen from Figure 3 that an electric screw driver has a 
motor, a gear box, a battery and an impact mechanism. There are 
two possible hierarchical structures of an electric screw driver. 
One is a normal type hierarchy, which has a motor, a gear box and 
a battery as a subcomponent of an electric screwdriver. The other 
is an impact type hierarchy, which has an impact mechanism in 
addition to the normal type structure.  
The attributes which are used by a designer to specify a screw 
driver are screwing torque (T) which is a functional attribute, 
impact factor (F) of the impact mechanism, reduction ratio (i) of 
the gear box, rating torque (Tm) of the motor, rating round per 
minutes of the motor and capacity of the battery. A value of 
screwing torque, T, is calculated by three variables; F, i and Tm. 
Module alternatives are designated to each component. A value of 
the attribute of each component can be selected from the possible 
values designated by module alternatives. The combination of 
hierarchy types and attribute values results in 8 possible variants 

of the screw driver family. However constraints reduce the 
potential variety. In this example, there is a constraint to a value 
of screwing torque; T > 50. Because of this constraint, 2 impact 
type variants are possible. Figure 4 shows one of the possible 
variants.  

3.2 Basic Concepts 
The following concepts are the basic parts of the ontology 
employed for the knowledge model of product architecture and 
family. The concepts in the ontology form a taxonomical 
hierarchy as shown in Figure 5. The concept taxonomy, properties 
of concepts and associations between concepts are represented in 
the UML format. The first level of the taxonomy consists of four 
concepts; product architecture concept, product variants concept, 
commonalization and attribute value concept.  

3.2.1 Product architecture 
Product architecture is a concept representing the schema which 
connotes the all possible structure and the possible value of the 
attribute of each product variant. This concept has the following 
sub concepts; qualitative architecture, quantitative architecture 
and module.   

Qualitative architecture is a concept representing qualitative view 
point of product architecture. This has the following sub concepts. 

 
Figure 3. Example of product architecture of electric screwdriver  



IJCC Workshop 2006 on Digital Engineering 

Figure 6 shows the associations defined among the qualitative 
architecture concepts. 

Element is a concept that constructs a product architecture. This is 
further categorized into three concepts; customer need, 
function and entity. For example, an element of customer need 
of screw driver is ‘easy to operate,’ ‘powerful screwing,’ etc., 
an element of function is ‘to generate screwing torque,’ etc., 
and an element of entity is ‘motor,’ ‘battery,’ etc.  

Hierarchy is a concept that represents a possible hierarchical 
relationship between elements. A hierarchy node has an 
association to an element, which is super level of the hierarchy, 
and elements, which are sub level of the hierarchy. In the 
screw driver example, a hierarchy node ‘impact type’ 
represents that ‘electric screw driver’ has four sub entities; 
‘impact mechanism,’ ‘battery,’ ‘gear box’ and ‘motor.’ 

Relation is a concept that represents a relation between elements. 
For example, ‘Function-Structure relation’ is defined among a 
function ‘to generate screwing torque’ and entities ‘motor,’  
‘gear box,’ ‘impact mechanism.’ 

Quantitative architecture is a concept representing a quantitative 
constraint which deduces the possible values of each product 
variant. This has following three sub concepts. Figure 7 shows the 
associations defined among quantitative architecture concepts. 

Attribute is a concept that represents a character of an element or a 
relation. An attribute node has an association to an element or 

a relation. In the example of Figure 3, three attributes are 
defined as the attribute of entity ‘motor’; ‘rating torque,’ 
‘rating round per minutes’ and ‘weight.’ An attribute node has 
a unique attribute value.  

Mapping is a concept that represents existence of a numerical 
function which determines a value of an attribute. A mapping 
node has an association to one output attribute and plural input 
attributes. A list of pairs of an equation and its condition is 
defined as a property of a mapping node. In Figure 3, a value 
of attribute ‘screwing torque (T)’ is determined by a mapping 
equation ‘T = Tm * F / i’ and values of input attributes; ‘rating 
torque (Tm),’ ‘impact factor (F)’ and ‘reduction ratio (i)’ when 
the attribute ‘impact factor’ exists. In case of normal type 
screw driver, a value of T is determined by an equation ‘T = 
Tm / i’ because the attribute ‘impact factor’ does not exist. 

Constraint is a concept that represents existence of a constraint 
among attribute values. A constraint node has an association 
to plural attributes. A list of pairs of a formula and its 
condition are defined as a property of a constraint node. In 
Figure 3, a formula ‘T>50’ is defined as a constraint of 
attribute ‘screwing torque (T)’.  

Module is a concept representing available modules of the entity. 
This has the following two sub concepts. Figure 8 shows 
associations defined among module concepts. 

 
Figure 4. Example of screw driver variant 



IJCC Workshop 2006 on Digital Engineering 

Module alternative is a concept which represents existence of 
available modules for the entity. A module alternative node 
has an association to one entity node. A list of module names 
is defined as property of the module alternative node.  

Value variety is a concept which represents attribute values of 
each module which is defined by a module alternative node. A 
value variety node has an association to one attribute node and 
one module alternative node. A list of possible values is 
defined as property of the value variety node. 

3.2.2 Product variant concept 
Product variant concept represents a qualitative structure of a 
product in the product family. Figure 9 shows associations defined 
among module concepts. This concept has the following three sub 
concepts.  

 

Product is a concept which represents a product variant in the 
product family.  

Because the product architecture connotes the all possible 
structure, a qualitative structure of a product variant is represented 
as an instance of concepts of product architecture. Note that this 
research uses instance as the similar sense of object-oriented 
technology; the substance of information of the class that defines 
the properties and methods of the object. In this sense, qualitative 
architecture concepts correspond to the class of the instances. 

Instance is a concept which represents that a product has an 
instance of product architecture concept. Three sub concepts 
corresponding to qualitative architecture concepts are defined; 
instance of element, instance of relation and instance of 
hierarchy. Each of an instance node has an association to a 
product node and a ‘class’ concept of product architecture.  

 
Figure 5. Taxonomy of modeling concepts 



IJCC Workshop 2006 on Digital Engineering 

The existence of instance node means that the product inherits the 
concept of product architecture, and that the product also inherits 
the attributes, the mappings, the constraints, the module 
alternatives and the value varieties which are associated to the 
class concept. This mechanism serves to reduce the amount of 
information required to represent product family. 

Selected module is a concept which represents the instance 
module selected for the instance of entity. A selected module 
node has a module number as property. A selected module 
node has an association to a module alternative and an 
instance of element.  

3.2.3 Commonalization 
Commonalization of components or parts is defined for instances 
of product variants. Figure 10 shows the association related to 
commonalization concept. 

Commonalization is a concept which represents the intention of a 
designer to commonalize components or parts of plural 
product variants. Commonalization node has an association to 
instance nodes of element. 

3.2.4 Attribute value concept 
Attribute value concept has two sub concepts; attribute value and 
violation. Figure 11 shows the associations related to attribute 
value concepts.  

Attribute value is a concept which represents a value of the 
attribute of the instance node. An attribute value node has a 
value and a value type as property.  

There are four association types for an attribute value node as 
shown in Figure 10. The different association means the different 
rationale of determining the attribute value. 

Association to an attribute and an instance is a usual type of 
association. This represents that the attribute value node is 
determined as an input of design. 

Association to an attribute, an instance and a commonalization is 
an association which presents that the attribute value node is 
determined as a result of commonalization. 

Association to an attribute, an instance, a mapping and attribute 
values is an association which represents that the attribute 
value node is determined as a result of calculating the 
mapping equation and input attribute values. 

Association to an attribute, an instance and a value variety is an 
association which represents that the attribute value node is 
determined as a result of selecting a module. 

‘An instance’ in above definition can be omitted when the 
attribute value is common to all product variants. 

After the attribute value is determined anyway, it should be 
checked whether it satisfies the constraint or not. If not, violation 

 
Figure 6. Associations of qualitative architecture concepts 

 
Figure 7. Associations of quantitative architecture concepts 

 
Figure 8. Associations of module concepts 

 
Figure 9. Associations of product variant concepts 

 
Figure 10. Association of commonalization 



IJCC Workshop 2006 on Digital Engineering 

node is created to indicate a designer. 

Violation is a concept which represents the attribute value violates 
the constraint. A violation node has an association to attribute 
values and a constraint.  

The violation should be resolved by altering input attribute values 
or by relaxing the constraint.  Note that the knowledge model does 
not take charge of resolving the constraint violation. The 
knowledge model does just describe the state of design which 
includes the constraint violation.  

3.3 Integrating Models 
This research employs the following descriptive models; value 
graphs, function-structure mapping, QFD and cost/worth graph. 
The standard design process by using these models is as follows. 
A designer firstly uses the value graph and the function-structure 
mapping in order to deploy customer needs, functions and 
components of product architecture. Then, varied weights of 
customer needs are set for each product variant, and they are 
deployed to worth of components. Finally, a designer can check 

the balance of relative worth and relative cost of each component. 
Note that this design process includes iterations in order to 
reflectively consider plural ideas.   

A concepts necessary to express these models is defined as a 
subclass of the basic concepts. There is a possibility that other 
concepts in addition to the extended concepts, which is explained 
in this subsection, are defined if necessary when the other model 
is integrated to the knowledge model. 

3.3.1 Value graph, Function-Structure mapping 
The value graph describes the deployment of customer need ‘good 
product’ into the detail customer needs. The function-structure 
mapping describes the deployment of function and structure of the 
product, and relationships between functions and components. The 
concept of customer need, function, entity and hierarchy is used to 
represent the deployment hierarchy. The additional concept, F-S 
relation, is defined as sub class of relation concept in order to 
represent the relationship between a function and a component.   

3.3.2 QFD 
QFD describes correlation numbers between customer needs and 
functions, and ones between functions and components. These 
correlations numbers are used to deploy the weights of customer 
needs to the weights of components by simple matrix calculation. 
The following additional concepts are introduced to represent 
QFD. 

C-F relation and F-S relation are both sub class concept of 
relation. They are used to represent the existence of 
correlation between a customer need and a function, and one 
between a function and a component. 

Weight is a sub class concept of attribute. It is used to represent 
the weight of a customer need, a function and a component.  

QFD correlation is a sub class concept of attribute. It is used to 
represent the correlation number of a C-F relation or an F-S 
relation.  

3.3.3 Cost/Worth Graph 
The cost/worth graph describes the balance of relative worth and 
relative cost for each component. The following additional 
concepts are defined to represent cost/worth graph.  

Relative worth is a sub class of attribute. This is calculated for 
each product variant by regularization of weights of 
components which are calculated by QFD.  

Cost is a sub class concept of attribute. It is used to represent cost 
of each component of each variant.  

Relative cost is a sub class concept of attribute. It is used to 
represent relative cost of each component. Its value is 
calculated for each product variant by regularization of cost of 
components. 

3.4 Plan of Implementation 
Now we are going to implement the design support system based 
on the proposed knowledge model. This system is developed in 
JAVA programming language (jdk 1.4.1) on Windows XP. Figure 
12 shows the architecture of the system. The rectangles with bold 
line are the parts explained in this article. 

 
Figure 11. Association of attribute value concepts 



IJCC Workshop 2006 on Digital Engineering 

4. Related Works 
Knowledge modeling methods provide the necessary framework 
for the representation of design information in all design domains. 
Many research groups have conducted this topic. In the domain of 
product architecture and family design, knowledge modeling of 
design is becoming hot topic although its ability to model is still 
very limited [14]. Table 1 summarizes the six works related to this 
research and compares their research aims and modeling ontology 
with ours.  

The research group of NIST (National Institute of Standard and 
Technology, USA.) has been developing the knowledge model 
called Core Product Model (CPM) toward large-scaled repository 
system of design rationale [5].  Wang extended CPM to represent 
the evolution of product families and of the rationale of the 
changes involved [16]. They focus on design repository of 

rationale of product family deployment so that the modeling 
ontology includes concepts, such as version and series of product 
variants. However, they don’t care about knowledge acquisition so 
much. The concepts about available module alternatives and 
commonalization of components are not considered, which are 
mainly used at the process of designing rather than the result of 
design. 

A configuration framework for mass customization of products 
that employs the UML is introduced by Felfernig [4]. They focus 
on knowledge acquisition and maintaining knowledge bases. The 
knowledge model written in the UML format is automatically 
translated into an executable logic representation in order to 
employ model-based diagnosis techniques for debugging faulty 
configuration knowledge bases, detecting infeasible requirements 
and for reconfiguring old configurations. Their knowledge model 
represents qualitative architecture and module alternatives, but it 

Value graph 
editor

QFD matrix
editor

Argumentation 
model 

browser/editor

Design operation

Knowledge model of product 
architecture/family

Argumentation 
model

Designer

Client computer

DB server

Design 
Knowledge 

Base

Operation to 
knowledge model

Change design state

- Edit argumentation model
- Select design state

Generate 
issue/position

- Browse information
- Select focused information
- Input/Edit information

Record design
stateXML Parser

Design state 
manager

State transition 
browser

Index design state

- Select design state

F-S Mapping 
editor

Cost/Worth
browser

Call operation

 
Figure 12. System architecture 

Table 1. Comparison of related works 

 
Nomaguchi 
et al. 2006 

Wang et al. 
2003 

Felfering et 
al. 2001 

McKay et al. 
1996 

Claesson et 
al. 2001 

Mortensen et 
al. 2005 

Nanda et al. 
2005 

Design repository X XX X - - - x 
Knowledge 
acquisition X - X X x x x 

Research 
aim 

Design support by 
descriptive model X - - x x x X 
Qualitative 
architecture X X X X X X X 
Quantitative 
architecture X x - X - - - 
Module 
alternative 

X 
- X - x X - 

Product variant X X X X X X X 
Commonalization X - - - - - - 
Attribute value X X - x - - - 
Descriptive model  X - - - - - x 

Modeling 
ontology 

Others 

 

Product 
evolution 
(version, 
series, ..)      

XX; more considered than this research, X; considered as well as this research, x; considered but a little, -; not considered. 



IJCC Workshop 2006 on Digital Engineering 

does not care of qualitative architecture.  

To reduce data redundancy when modeling families of products, 
the Generic Bill-of-Material (GBOM) concept developed at the 
Eindhoven University of Technology allows all variants of a 
product family to be specified only once [3].  McKay combined 
the GBOM concept with product modeling concepts and software 
to reduce data redundancy when considering multiple views, e.g., 
sales, manufacturing and assembly [8]. McKay’s knowledge 
model is useful for design repository and knowledge acquisition 
because it can represent qualitative architecture, quantitative 
architecture and module alternatives. His knowledge model does 
not cares about integrating descriptive models in order to support 
design. .  

Claesson uses function-means-trees to create configurable 
components that represent a parameterized set of design solutions 
[1]. This knowledge model was deployed at Saab automobile to 
help control product variety. Mortensen proposed PFH (Product 
Family Hierarchy) diagram which visualizes the qualitative 
architecture and the key component which could be a key of 
commonalization among product family [10]. PFH is deployed at 
the Danish company Martin Professional A/S. Both knowledge 
models employ simple ontology of qualitative architecture and 
module alternatives in order to actually be used in companies. 
However, a designer has to use another tools to check the 
limitation of designed architecture, because the knowledge model 
represents neither descriptive models nor quantitative architecture. 

Nanda proposed a knowledge model based on OWL (Web 
Ontology Language) in order to capture, share, and organize 
product design contents concepts and contexts across different 
phases of the product design process [11]. This knowledge model 
represents qualitative architecture of three aspects; customer needs 
functions and components. It also represents relationships among 
them by integrating QFD into the knowledge mode.  

5. Conclusion 
This paper reports a knowledge model for a knowledge 
management oriented support system for product architecture and 
family design. The ontology of the knowledge model is designed 
in order to capture any design state of product architecture and 
family design, and to integrate descriptive design models. This 
paper also shows our plan of implementing knowledge 
management system based on the knowledge model. The ability of 
the knowledge model will be evaluated by performing the 
illustrative example design on the system.  

Acknowledgements 
This research has been carried out partially at the Strategic 
Research Base, Handai (Osaka University) Frontier Research 
Center supported by the Japanese Government’s Special 
Coordination Fund for Promoting Science and Technology. 

References 
[1] Claesson, A., Johannesson, H. and Gedell, S. Platform 

Product Development: Product Model a System Structure 
Composed of Configurable Components, In Proceedings of 
the DETC’01 ASME 2001 Design Engineering Technical 

Conferences and Computer and Information in Engineering 
Conference, DTM-21714, 2001.  

[2] Dieng, R. Knowledge Management and the Internet, IEEE 
Intelligent Systems, Vol. 15, No. 3, pp. 14-17, 2000. 

[3] Erens, F. J. and Hegge, H. M. H. Manufacturing and Sales 
Co-ordination for Product Variety, International Journal of 
Production Economics, Vol. 37, No. 1, pp. 83-99, 1994. 

[4] Felfernig, A., Friedrich, G. and Jannach, D. Conceptual 
Modeling for Configuration of Mass-Customizable Products, 
Artificial Intelligence in Engineering, Vol. 15, pp. 165-176, 
2001. 

[5] Fenves, S. A Core Product Model for Representing Design 
Information, NISTIR 6736, NIST, Gaithersburg, MD, 2001. 

[6] Fujita, K. Product Variety Optimization under Modular 
Architecture, Computer-Aided Design, Vol. 34, No. 12, pp. 
953-965, 2002. 

[7] Martin, M. V. and Ishii, K. Design for Variety: Developing 
Standardized and Modularized Product Platform 
Architectures, Research in Engineering Design, Vol. 13, No. 
4, pp. 213-235, 2002. 

[8] McKay, A., Erens, F. and Bloor, M. S. Relating Product 
Definition and Product Variety, Research in Engineering 
Design, Vol. 2, pp. 63-80, 1996. 

[9] Meyer, M. H. Revitalize Your Product Lines Through 
Continuous Platform Renewal, Research Technology 
Management, Vol. 40, No. 2, pp. 17-28, 1997. 

[10] Mortensen, N. H., Munk, L. and Fiil-Nielsen, O. Preparing 
for a Product Platform – Product Family Hierarchy Procedure 
-, In Proceedings of International Conference on 
Engineering Design (ICED 05), 296.45, 2005. 

[11] Nanda, J., Simpson, T. W., Shooter, S. B. and Stone, R. B, A 
Unified Information Model for Product Family Design 
Management, In Proceedings of the DETC’05 ASME 2005 
Design Engineering Technical Conferences and Computer 
and Information in Engineering Conference, 84869, 2005. 

[12] Nomaguchi, Y., Ohnuma, A. and Fujita, K., Design Rationale 
Acquisition in Conceptual Design by Hierarchical Integration 
of Action, Model and Argumentation, In Proceedings of the 
2004 ASME Design Engineering Technical Conferences & 
Computers and Information in Engineering Conference, 
DETC2004/CIE-57681, 2004. 

[13] Simon, H. A. The Sciences of the Artificial, The MIT Press, 
1969. 

[14] Simpson, T. W. Product Platform Design and Customization: 
Status and Promise, Artificial Intelligence for Engineering 
Design, Analysis and Manufacturing, Vol. 18, No. 1, pp. 3-
20, 2004. 

[15] Ulrich, K. The role of product architecture in the 
manufacturing firm, Research Policy, Vol. 24, No. 3, pp. 
419-440, 1995. 

[16] Wang, F., Fenves, S. J., Sudarsan, R. and Sriram, Ram. D. 
Towards Modeling the Evolution of Product Families, In 
Proceedings of the DETC’03 ASME 2003 Design 
Engineering Technical Conferences and Computer and 
Information in Engineering Conference, CIE-48216, 2003.  



IJCC Workshop 2006 on Digital Engineering 

[17] Wilhelm, B. Platform and Modular Concepts at Volkswagen- 
Their Effect on the Assembly Process, Transforming 
Automobile Assembly: Experience in Automation and Work 
Organization, K. Shimokawa, U. J¨urgens and T. Fujimoto, 
eds., Springer-Verlag, New York, pp. 146-156, 1997. 


